

NO. 14-___

In the

Supreme Court of the United States

GOOGLE INC.,

PETITIONER,

v.

ORACLE AMERICA, INC.,

RESPONDENT.

On Petition for a Writ of Certiorari
to the United States Court of Appeals

for the Federal Circuit

PETITION FOR A WRIT OF CERTIORARI

BRUCE W. BABER

KING & SPALDING LLP

1180 Peachtree Street, NE

Atlanta, GA 30309

ROBERT A. VAN NEST

STEVEN A. HIRSCH

CHRISTA M. ANDERSON

MICHAEL S. KWUN

DAN JACKSON

KEKER & VAN NEST LLP

633 Battery Street

San Francisco, CA 94111

DARYL L. JOSEFFER

 Counsel of Record

ASHLEY C. PARRISH

ADAM M. CONRAD

ETHAN P. DAVIS

KING & SPALDING LLP

1700 Pennsylvania Ave., NW

Washington, DC 20006

(202) 737-0500

djoseffer@kslaw.com

RENNY HWANG

GOOGLE INC.

1600 Amphitheatre Parkway

Mountain View, CA 94043

Counsel for Petitioner

October 6, 2014

mailto:djoseffer@kslaw.com

i

QUESTION PRESENTED

Congress specified that “original works of

authorship” are generally eligible for copyright

protection, 17 U.S.C. § 102(a), but “[i]n no case does

copyright protection for an original work of

authorship extend to any idea, procedure, process,

system, method of operation, concept, principle, or

discovery, regardless of the form in which it is

described, explained, illustrated, or embodied in such

work.” Id. § 102(b).

In this case, the Federal Circuit held that

Section 102(b) does not exclude systems or methods

of operation from copyright protection and that all

elements of an original work are “entitled to

copyright protection as long as the author had

multiple ways to express the underlying idea.” App.

47.

The question is:

Whether copyright protection extends to all

elements of an original work of computer software,

including a system or method of operation, that an

author could have written in more than one way.

ii

PARTIES TO THE PROCEEDING

AND RULE 29.6 STATEMENT

Petitioner in this Court, defendant-cross

appellant below, is Google Inc. Respondent in this

Court, plaintiff-appellant below, is Oracle America,

Inc.

Google Inc. is a publicly traded company

(NASDAQ: GOOG and GOOGL). No publicly held

company owns 10 percent or more of Google Inc.’s

stock.

iii

TABLE OF CONTENTS

QUESTION PRESENTED ... i

PARTIES TO THE PROCEEDING

AND RULE 29.6 STATEMENT ii

TABLE OF AUTHORITIES vii

PETITION FOR A WRIT OF CERTIORARI 1

OPINIONS BELOW .. 4

JURISDICTION .. 4

STATUTORY PROVISION INVOLVED 4

STATEMENT OF THE CASE 5

A. Java and Android .. 5

B. The District Court Proceedings 8

C. The Court of Appeals Proceedings 10

REASONS FOR GRANTING THE PETITION 13

I. The Courts Of Appeals Are In Disarray

About The Application Of Section 102(b) To

Software. ... 13

II. The Federal Circuit’s Decision Runs Afoul Of

The Statute, This Court’s Controlling

Precedents, And The Distinction Between

Patent And Copyright. 20

A. The statute codifies this Court’s

exclusion of systems and methods of

operation from copyright protection. 20

B. Systems and methods of operation are

governed by patent, not copyright, law. 23

iv

C. The Java method headers are a system

or method of operation. 29

III. This Case Presents a Recurring Question of

Exceptional Importance. 32

CONCLUSION .. 37

APPENDIX

Appendix A

Opinion of the United States Court

of Appeals for the Federal Circuit

(May 9, 2014) .. App-1

Appendix B

Order Partially Granting and

Partially Denying Defendant’s

Motion for Summary Judgment on

Copyright Claim of the United States

District Court for the Northern

District of California (Sept. 15, 2011) App-79

Appendix C

Order on Motions for Judgment as a

Matter of Law of the United States

District Court for the Northern

District of California (May 10, 2012) App-99

v

Appendix D

Order Regarding Copyrightability of

Certain Replicated Elements of the

Java Application Programming

Interface of the United States

District Court for the Northern

District of California (May 31, 2012) App-100

Appendix E

Findings of Fact and Conclusions of

Law on Equitable Defenses of the

United States District Court for the

Northern District of California (May

31, 2012) .. App-165

Appendix F

Final Judgment of the United States

District Court for the Northern

District of California (June 20, 2012) App-169

Appendix G

Order Denying Motion for Judgment

as a Matter of Law and New Trial of

the United States District Court for

the Northern District of California

(July 13, 2012) .. App-172

Appendix H

Order Denying Motion for Judgment

as a Matter of Law and New Trial of

the United States District Court for

the Northern District of California

(Sept. 4, 2012) ... App-173

vi

Appendix I

17 U.S.C. § 101 App-174

17 U.S.C. § 102 App-188

vii

TABLE OF AUTHORITIES

Cases

Alice Corp. Pty. Ltd. v. CLS Bank Int’l,

134 S. Ct. 2347 (2014) 25, 27, 28

Am. Broad. Cos. v. Aereo, Inc.,

134 S. Ct. 2498 (2014) .. 37

Apple Computer, Inc. v.

Franklin Computer Corp.,

714 F.2d 1240 (3d Cir. 1983) 17, 18

Ass’n for Molecular Pathology v.

Myriad Genetics, Inc.,

133 S. Ct. 2107 (2013) .. 28

ATC Distribution Grp., Inc. v. Whatever It Takes

Transmissions & Parts, Inc.,

402 F.3d 700 (6th Cir. 2005) 16

Baker v. Selden,

101 (11 Otto) U.S. 99 (1880) passim

Bilski v. Kappos,

130 S. Ct. 3218 (2010) .. 28

Brief English Sys., Inc. v. Owen,

48 F.2d 555 (2d Cir. 1931) 29, 30

Computer Assocs. Int’l Inc. v. Altai, Inc.,

982 F.2d 693 (2d Cir. 1992) 14, 17, 18

Eng’g Dynamics, Inc. v. Structural Software, Inc.,

26 F.3d 1335 (5th Cir. 1994) 17

Eng’g Dynamics, Inc. v. Structural Software, Inc.,

46 F.3d 408 (5th Cir. 1995) 17

Feist Publ’ns, Inc. v. Rural Tel. Serv. Co.,

 499 U.S. 340 (1991) 10, 21, 22, 26

viii

Gates Rubber Co. v. Bando Chem. Indus.,

9 F.3d 823 (10th Cir. 1993) 17

Kregos v. Associated Press,

937 F.2d 700 (2d Cir. 1991) 19

KSR Int’l Co. v. Teleflex Inc.,

550 U.S. 398 (2007) .. 25

Lexmark Int’l, Inc. v.

Static Control Components, Inc.,

387 F.3d 522 (6th Cir. 2004) 15, 16, 19

Lotus Dev. Corp. v. Borland Int’l, Inc.,

49 F.3d 807 (1st Cir. 1995) passim

Lotus Dev. Corp. v. Borland Int’l, Inc.,

516 U.S. 233 (1996) .. 1

Lotus Dev. Corp. v. Borland Int’l, Inc.,

831 F. Supp. 223 (D. Mass. 1993) 29

Matthew Bender & Co. v. West Publ’g Co.,

158 F.3d 674 (2d Cir. 1998) 19

Mayo Collaborative Servs. v.

Prometheus Labs., Inc.,

132 S. Ct. 1289 (2012) 25, 28

Milner v. Dep’t of Navy,

131 S. Ct. 1259 (2011) .. 22

Mitel, Inc. v. Iqtel, Inc.,

124 F.3d 1366 (10th Cir. 1997) 14, 18

North Coast Indus. v. Jason Maxwell, Inc.,

972 F.2d 1031 (9th Cir. 1992) 19

Publications Int’l, Ltd. v. Meredith Corp.,

88 F.3d 473 (7th Cir. 1996 19

ix

Research Corp. Techs., Inc. v. Microsoft Corp.,

627 F.3d 859 (Fed. Cir. 2010) 27

SAS Institute Inc. v. World Programming Ltd.

Case C-406/10,

2012 E.C.L.I 259, [2012] 3 C.M.L.R. 4 36

Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc.,

797 F.2d 1222 (3d Cir. 1986) 14, 16

Yankee Candle Co. v. Bridgewater Candle Co.,

259 F.3d 25 (1st Cir. 2001) 19

Statutes

17 U.S.C. § 101 .. 27

17 U.S.C. § 102 .. passim

17 U.S.C. § 107 .. 28

17 U.S.C. § 302 .. 26

17 U.S.C. § 1201 .. 35

28 U.S.C. § 1254 .. 4

35 U.S.C. § 101 .. 25

35 U.S.C. § 102 .. 25

35 U.S.C. § 103 .. 25

Other Authorities

Amazon Web Services,

AWS Products & Solutions (2014) 34

Br. of Amici Curiae Rackspace US, Inc. et al.,

Oracle Am., Inc. v. Google Inc.,

Dkt. No. 116, Nos. 13-1021, et al.

(Fed. Cir. May 30, 2013) 34

x

Council of Ministers Directive 91/250/EEC of 14 May

1991 on the Legal Protection of Computer

Programs, 1991 O.J. (L 122) 35

Ferguson, Charles H. & Morris, Charles R.,

Computer Wars: The Post-IBM World (1994) 33

H.R. REP. NO. 94-1476 (1976) 22

International Data Corporation,

Worldwide Smartphone OS Market Share

(2014) .. 7

Kane, Tim,

Ewing Marion Kauffman Foundation,

The Importance of Startups in Job Creation

and Job Destruction (2010) 36

Lindberg, Van,

The Copyrightability Of APIs In The

Land Of OpenStack (2014) 33

Oracle Corp.,

Frequently Asked Questions, Oracle Linux

(2014) .. 33

S. REP. NO. 94-473 (1975) .. 22

Vaughan-Nichols, Steven J.,

OpenStack vs. CloudStack: The Beginning

of the Open-Source Cloud Wars, ZDNet

(Apr. 12, 2012) .. 34

Wilcox, Joe,

Will OS X’s Unix Roots Help Apple Grow?,

CNET.com (May 21, 2001) 33

WineHQ,

About Wine .. 35

1

PETITION FOR A WRIT OF CERTIORARI

In 1995, this Court granted certiorari in Lotus

Development Corp. v. Borland International, Inc., 516

U.S. 233 (1996), to resolve the question presented

here. The First Circuit had held―consistent with the

plain language of 17 U.S.C. § 102(b) but in conflict

with other courts of appeals―that methods of

operation embodied in computer programs are not

entitled to copyright protection. This Court

deadlocked, affirming by an equally divided court.

Two decades later, this oft-acknowledged circuit split

has deepened and the question presented has grown

even more important as software has become a

fixture of modern life.

This case directly implicates the unanswered

question in Lotus because the Federal Circuit

extended copyright protection to systems and

methods of operation, including computer interfaces.

That holding would obstruct an enormous amount of

innovation in fast-moving, high-technology

industries, in part because innovation depends on

software developers’ ability to build on what has

come before. If the Federal Circuit’s holding had

been the law at the inception of the Internet age,

early computer companies could have blocked vast

amounts of technological development by claiming

95-year copyright monopolies over the basic building

blocks of computer design and programming. By the

time Google and countless other innovators even

came onto the scene, others could have locked up the

field for longer than most people will live.

Consider, for example, the well-known keyboard

design known as QWERTY. After Remington

2

developed that organization of letters and symbols

decades ago, it became standard for typewriters and,

later, for computer keyboards. People invested time

and effort in learning the QWERTY design, and then

expected all keyboards to use it. Later, companies

like IBM and Apple added their own additional keys

to the original QWERTY layout. If Remington had

brought a copyright infringement lawsuit against a

keyboard manufacturer for copying the QWERTY

layout, it would have failed. That design was

original and creative, but Remington was not entitled

to appropriate the investments made by others in

learning how to use it. Otherwise, Remington could

have monopolized not only the sale of its patented

typewriters for the length of a patent term, but also

the sale of all keyboards for nearly a century.

This case raises the same basic issue. Individual

computer programmers and third-party companies

develop applications (the ubiquitous “apps”) for

mobile devices, such as smartphones, that use the

Android platform. Because many computer

programmers are familiar with the Java

programming language, Google allowed programmers

to write programs for Android using it, including the

basic shorthand commands of the Java language. As

relevant here, a person writing an Android

application in the Java language may use shorthand

commands to cause a computer to perform certain

functions, such as choosing the larger of two

numbers. Programmers have made significant

investments in learning these commands; they are, in

effect, the basic vocabulary words of the Java

language. When programmers sit down to write

applications, they expect to be able to use them.

3

The Federal Circuit nonetheless held that,

although the Java language is concededly not

entitled to copyright protection, the elements of the

Java platform that enable the use of the shorthand

commands are copyrightable. The court based that

conclusion on its view that 17 U.S.C. § 102(b) does

not exclude systems and methods of operation from

copyright protection―even though the statute

unambiguously does exactly that:

In no case does copyright protection for an

original work of authorship extend to any

idea, procedure, process, system, method of

operation, concept, principle, or discovery,

regardless of the form in which it is

described, explained, illustrated, or

embodied in such work.

17 U.S.C. § 102(b).

By replacing that statutory directive with a

different one―that copyright protection does extend

to a system or method of operation so long as there

was more than one way to write it―the Federal

Circuit usurped Congress’s role, deepened a circuit

split that this Court previously granted certiorari to

resolve, allowed Oracle to use copyright law to evade

the limits on patent protection, and thereby blocked

developers from building on what has come before.

The court did so, moreover, in one of the most

important cases of its kind, concerning the widely-

used Java language and Android platform. This

Court’s review is needed now, before tomorrow’s

innovation falls victim to the decision below.

4

OPINIONS BELOW

The opinion of the court of appeals is reported at

750 F.3d 1339 and reproduced at App. 1. The district

court’s opinion is published at 872 F. Supp. 2d 974

and reproduced at App. 100.

JURISDICTION

The court of appeals rendered its decision on

May 8, 2014. On July 10, 2014, the Chief Justice

extended the time for filing a petition to and

including October 6, 2014. This Court has

jurisdiction under 28 U.S.C. § 1254(1).

STATUTORY PROVISION INVOLVED

Section 102 of the Copyright Act provides:

 (a) Copyright protection subsists, in

accordance with this title, in original works

of authorship fixed in any tangible medium

of expression, now known or later developed,

from which they can be perceived,

reproduced, or otherwise communicated,

either directly or with the aid of a machine

or device. . . .

. . . .

 (b) In no case does copyright protection

for an original work of authorship extend to

any idea, procedure, process, system, method

of operation, concept, principle, or discovery,

regardless of the form in which it is

described, explained, illustrated, or

embodied in such work.

17 U.S.C. § 102.

5

STATEMENT OF THE CASE

A. Java and Android

1. Sun Microsystems released the Java

programming language and software platform in

1996. By making the Java language free for all to

use, Sun sought to “build the biggest tent and invite

as many people as possible.” C.A. App. 22141.

As the district court explained, the Java

language is made up of “keywords and other symbols”

as well as “a set of pre-written programs to carry out

various commands.” App. 106. In encouraging

computer programmers to learn and use Java, Sun

touted those pre-written programs. C.A. App. 22137.

Sun succeeded in bringing an entire generation of

programmers into the Java community. App. 105.

Millions of programmers invested time and effort into

learning Java, making it one of the world’s most

popular programming languages. App. 104.

Programmers access the set of pre-written

programs through the Java application programming

interface (“API”)—a highly structured system with

its own nomenclature. The application programming

interface provides access to thousands of “methods,”

each of which performs a function such as choosing

the higher of two numbers. The methods are grouped

into “classes,” which are further grouped into 166

“packages” of programs—much like members of the

animal kingdom are grouped into species, genuses,

and families. See App. 106–07.

The computer code for each method “consists of

the method header and the method body.” App 111.

The method header, also known as a “declaration,”

6

“introduces the method body” and “specif[ies] the

names, parameters and functionality of the methods

and classes.” App. 7, 29–30. “The method body is a

block of code that then implements the method” by

instructing a computer how to perform the relevant

function; it is therefore known as “implementing

code.” App. 111.

To use the methods, programmers do not need to

concern themselves with the methods’ implementing

code. Instead, programmers use a shorthand

command that causes the implementing code to

perform the desired function, such as choosing the

greater of two numbers. App. 33. In this way, a

programmer uses the shorthand commands to

operate the methods, i.e., the pre-written programs.

By using a method’s shorthand command, a

programmer can write complex software efficiently,

without having to write out implementing code for

each individual routine task.

These shorthand commands take the specific

format “java.package.Class.method(input).” App.

112–16. For example, “java.lang.Math.max(1,2)”

refers to a particular method (“max”) that returns the

greater of two numbers (i.e., 1 and 2) and is located

in the “Math” class, which in turn is located in the

“java.lang” package. App. 112. Each shorthand

command is derived from the method’s header,

which, like the command, specifies the method’s

name, class, package, and inputs. App. 7, 29–30.

2. Google is the lead developer of Android, one

of the most popular mobile device platforms in the

world. In the second quarter of 2014, third-party

manufacturers such as Samsung, HTC, LG, and

7

Lenovo sold more than 255 million smartphones that

use the Android platform. See International Data

Corporation, Worldwide Smartphone OS Market

Share (2014), available at http://www.idc.com/

prodserv/smartphone-os-market-share.jsp.

The Android platform includes 168 packages of

methods. App. 109. For every one of those methods,

Google wrote or acquired original implementing code.

App. 101. As the district court explained, “[a]ll agree

that Google was and remains free to use the Java

language itself” and that the “method

implementations by Google are free of copyright

issues.” App. 108. The parties’ dispute centers on

Google’s use of the same headers for the methods

found in 37 of the Android packages―methods that

perform “functions . . . that [a]re key to mobile

devices.” App. 107.

Independent computer programmers create

applications for use on Android devices. Because

those programmers know and often prefer to use the

Java programming language, Google concluded that

programmers “would want to find the same 37 sets of

functionalities in the new Android system callable by

the same names as used in Java.” App. 9. For those

shorthand commands to work on the Android

platform, Google had to replicate the method headers

precisely; any change to the headers would have

prevented the shorthand commands from working

properly. App. 109–10. As the district court found,

therefore, “Android and Java must be identical when

it comes to those particular lines of code.” App. 109.

Because Google replicated only the method headers,

and the body of each method (the implementing code)

8

was written from scratch, “only three percent of the

lines of code are the same” in the 37 disputed

packages. App. 109.

B. The District Court Proceedings

After Oracle acquired Sun in 2010, Oracle

brought this action for patent and copyright

infringement. The district court entered judgment in

Google’s favor on Oracle’s patent claims, and Oracle

has not appealed that determination. App. 170.

Oracle’s copyright claims accused Google of

copying the method headers and the so-called

“structure, sequence, and organization” of the Java

application programing interface. App. 3. Oracle

premised its “structure, sequence, and organization”

claim on the theory that the method headers “embody

the structure” of the application programming

interface by specifying the name, package, and class

of each method. App. 21. All of Oracle’s claims thus

challenged the same thing: Google’s replication of

the method headers. App. 101. Google responded, in

part, that Java’s method headers are not entitled to

copyright protection because, among other things,

they constitute or embody a system or method of

operation―specifically, a system or method of

operating the pre-written programs.

The district court considered the copyrightability

of the method headers at the same time the jury

considered whether―if the district court held the

method headers to be copyrightable―Google would be

liable for infringement. Those two determinations

proceeded on parallel tracks, with the district court

instructing the jury to assume that Oracle was

9

entitled to copyright protection and to consider only

infringement and fair use. The jury found in Oracle’s

favor on infringement but hung on Google’s fair-use

defense. App. 12.

In an extensive published opinion, the district

court held that the method headers are not

copyrightable and that Google is therefore entitled to

judgment as a matter of law. App. 100–65. The

court emphasized that Google was entitled to write

its own code implementing the same functions or

methods that are found in the Java application

programming interface. “[C]opyright law does not

confer ownership over any and all ways to implement

a function or specification, no matter how creative [it]

may be.” App. 154.

The district court then held that the method

headers, including their names and organization, are

a system or method of operation excluded from

copyright protection under Section 102(b) of the

Copyright Act. App. 159. Because the system of

method headers is a “command structure” for

operating the pre-written programs, the court

concluded that it might receive “patent protection

perhaps—but not copyright protection.” Id.

The district court emphasized that compatibility

“sheds further light on the character of the command

structure as a system or method of operation.” App.

159. By the time Android came into existence,

programmers had written “millions of lines of code”

in Java, which “necessarily used the java.package.

Class.method() command format” and “called on all

or some of the specific 37 packages at issue and

necessarily used the command structure of names

10

[used by Google].” Id. “In order for at least some of

this code to run on Android, Google was required to

[use] the same java.package.Class.method()

command system using the same names with the

same ‘taxonomy’ and with the same functional

specifications.” App. 159–60. As a result, “Google

replicated what was necessary to achieve a degree of

interoperability—but no more.” App. 160.

The district court found further support for its

holding in other principles of copyright law. First,

“[u]nder the merger doctrine, when there is only one

(or only a few) ways to express something, then no

one can claim ownership of such expression by

copyright.” App. 153. Second, “names and short

phrases are not copyrightable.” Id. Third, citing this

Court’s decision in Feist Publications, Inc. v. Rural

Telephone Service Co., 499 U.S. 340, 356 (1991), the

court observed that “we should not yield to the

temptation to find copyrightability merely to reward

an investment made in a body of intellectual

property.” App. 153.

C. The Court of Appeals Proceedings

The Federal Circuit reversed, opining that

copyrightability presents “a low bar” that requires

only that a work be original and expressive in the

sense that “the author had multiple ways to express

the underlying idea.” App. 17, 47. The court noted a

three-way circuit split on whether to deny copyright

protection to all systems or methods of operation,

grant copyright protection to essentially all elements

of an original and creative computer program

(including systems and methods of operation), or

11

apply a third test known as the abstraction/filtration/

comparison test. App. 23–24.

Applying Ninth Circuit law because this case

arose within that circuit and copyright law does not

fall within the Federal Circuit’s exclusive

jurisdiction, the Federal Circuit concluded that the

Ninth Circuit has adopted the abstraction/filtration/

comparison test. App. 24. After identifying a circuit

split on how to apply that test, the court of appeals

explained that it would: “first break down the

allegedly infringed [computer] program into its

constituent . . . parts”; then “sift out all non-

protectable material, including ideas and expression

that is necessarily incidental to those ideas”; and

finally “compare[] the remaining creative expression

with the allegedly infringing program.” App. 25

(internal quotation marks and citation omitted).

Using that framework, the court of appeals first

held that the merger doctrine is inapplicable for two

reasons: merger is “irrelevant” to copyrightability

and Sun could have written the method headers in

more than one way. App. 30–31. The court also

rejected the district court’s reliance on the names-

and-short-phrases doctrine. App. 33–35.

The Federal Circuit then held that Section

102(b)—which provides that “[i]n no case does

copyright protection for an original work of

authorship extend to any . . . system [or] method of

operation,” 17 U.S.C. § 102(b)—“does not extinguish

the protection accorded a particular expression of an

idea merely because that expression is embodied in a

method of operation.” App. 23 (internal quotation

marks omitted; emphasis added). In the Federal

12

Circuit’s view, Section 102(b) serves only to codify the

“idea/expression dichotomy”—the principle that

“[c]opyright protection extends only to the expression

of an idea—not to the underlying idea itself.” App.

18. Because “Google . . . could have designed its own

. . . [application programming interface] packages if

it wanted to do so,” and the method headers “could

have been written and organized in any number of

ways and still have achieved the same functions,” the

court held that “Section 102(b) does not bar the

packages from copyright protection.” App. 49. In the

court of appeals’ view, “Section 102(a) and 102(b) are

to be considered collectively so that certain

expressions are subject to greater scrutiny.” App. 23.

The court of appeals also rejected the district

court’s consideration of compatibility, calling it

“[i]rrelevant to [c]opyrightability.” App. 50.

According to the Federal Circuit, compatibility, and

the fact that Java’s method headers “had become the

effective industry standard,” are only factors to be

balanced with others as part of a fair-use defense.

App. 45–53, 57. The court remanded for a new trial

on that defense. App. 53–62.1

1 The court of appeals addressed several other issues that are

not relevant to the question presented in this petition. For

example, the court affirmed the district court’s determination

that Google copied “certain small snippets of code.” App. 102.

By stipulation of the parties, the district court awarded no

damages for that copying, which it characterized as “minor” and

“innocuous.” App. 118, 120.

13

REASONS FOR GRANTING THE PETITION

The Federal Circuit’s decision warrants review

for three reasons. First, it presents a longstanding,

widely-recognized split in the courts of appeals.

Second, the Federal Circuit’s holding is in conflict

with decisions of this Court and contrary to the plain

language of the Copyright Act. Third, whether

copyright may be used to evade the limits on patent

protection, in order to secure 95-year (or longer)

monopolies, is an exceptionally important question.

This Court already recognized the certworthiness of

this question by granting review in Lotus. Since

then, the circuit split has only deepened and the

question has grown even more important as software

has become ubiquitous in daily life.

I. The Courts Of Appeals Are In Disarray

About The Application Of Section 102(b) To

Software.

The Copyright Act provides that copyright

protection subsists in “original works of authorship.”

17 U.S.C. § 102(a). But that protection does not

extend to all elements of an original work. Section

102(b) specifies that “in no case does copyright

protection for an original work of authorship extend

to any idea, procedure, process, system, method of

operation, concept, principle, or discovery, regardless

of the form in which it is described, explained,

illustrated, or embodied in such [original] work.” Id.

§ 102(b).

As the Federal Circuit and other courts of

appeals have acknowledged, the circuits are deeply

divided on how to construe Section 102(b). See, e.g.,

14

App. 23–24; Lotus Dev. Corp. v. Borland Int’l, Inc., 49

F.3d 807, 815 (1st Cir. 1995); Computer Assocs. Int’l

Inc. v. Altai, Inc., 982 F.2d 693, 705 (2d Cir. 1992);

Mitel, Inc. v. Iqtel, Inc., 124 F.3d 1366 (10th Cir.

1997). Some courts follow the statute’s plain

meaning, holding that Section 102(b) precludes

copyright protection for all systems or methods of

operation, including those in computer programs.

See, e.g., Lotus, 49 F.3d at 815. Like the Federal

Circuit, however, other courts have rejected the

statutory text and held that Section 102(b) is merely

a reminder of the dichotomy between ideas (which

are not copyrightable) and expressions of ideas

(which generally are). See, e.g., Whelan Assocs., Inc.

v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1234 (3d

Cir. 1986). In those courts’ view, a “method of

operation” embodied in a computer program is

copyrightable so long as its creator could have

designed it in different ways. See id. at 1234

(internal quotation marks omitted).

1. Lotus exemplifies the plain meaning

approach. That case concerned a spreadsheet

program’s menu command hierarchy, which

organized commands such as “print,” “copy,” and

“quit” into more than 50 menus and submenus

accessible by users. 49 F.3d at 809. The First Circuit

held that the hierarchy was a “method[] of

operation,” and was therefore excluded from

copyright protection under Section 102(b)―regardless

of whether the hierarchy (or the overall program)

satisfied the originality requirement of Section 102(a)

and regardless of whether there were other ways to

write or structure the hierarchy. Id. at 815.

15

The First Circuit reasoned that a “‘method of

operation’ . . . refers to the means by which a person

operates something, whether it be a car, a food

processor, or a computer.” Id. (emphasis added).

Because the “menu command hierarchy provides the

means by which users control and operate” the Lotus

1-2-3 program, the hierarchy was a method of

operation excluded from copyright protection. Id.

For that reason, it was “immaterial” that “Lotus

developers could have designed the Lotus menu

command hierarchy differently.” Id. at 816.

In determining whether an element of a

computer program is a method of operation, the First

Circuit also took into account compatibility (whether

the element enables the program to interact with

other software or hardware) and the lock-in effect

(whether users have invested time and effort in

learning how to use the method of operation). The

First Circuit noted that the fact “[t]hat the Lotus

menu command hierarchy is a ‘method of operation’

becomes clearer when one considers program

compatibility.” Id. at 817. The court rejected as

“absurd” Lotus’s theory that, “if a user uses several

different programs, he or she must learn how to

perform the same operation in a different way for

each program used.” Id. at 817–18.

The Sixth Circuit has similarly held that, “even

if a work is in some sense ‘original’ under § 102(a), it

still may not be copyrightable because [of] § 102(b),”

which excludes original methods of operation from

copyright protection. Lexmark Int’l, Inc. v. Static

Control Components, Inc., 387 F.3d 522, 534 (6th Cir.

2004). That court explained that, although systems

16

and methods of operation may be “[o]riginal and

creative,” Section 102(b) excludes them from

copyright protection because they are “the idea itself”

rather than the “expression of the idea.” ATC

Distribution Grp., Inc. v. Whatever It Takes

Transmissions & Parts, Inc., 402 F.3d 700, 707 (6th

Cir. 2005) (internal quotation marks omitted).

The Sixth Circuit also held that the merger

doctrine precludes copyright protection for elements

of a computer program that are necessary for

compatibility. Lexmark, 387 F.3d at 536. The court

explained that, if there is only one practical way to

express an idea, that expression is not entitled to

copyright protection. Id. at 535. “Program code that

is strictly necessary to achieve current compatibility

presents a merger problem, almost by definition, and

is thus excluded from the scope of any copyright.” Id.

at 536 (internal quotation marks omitted).

2. Like the Federal Circuit in this case, other

courts of appeals have disagreed with the First and

Sixth Circuits in a number of respects. The Third

Circuit, for example, insists that all elements of a

computer program, including its structural elements,

are copyrightable so long as the program could have

been written differently and still served the same

high-level purpose, such as “to aid in the business

operations of a dental laboratory.” Whelan, 797 F.2d

at 1238. In that court’s view, Section 102(b) “was not

intended to enlarge or contract the scope of copyright

protection,” only to reinforce the “somewhat

metaphysical” dichotomy between idea and

expression, with “idea” referring to a program’s

general purpose. Apple Computer, Inc. v. Franklin

17

Computer Corp., 714 F.2d 1240, 1252, 1253 (3d Cir.

1983).

The Second Circuit has plowed a third path: the

so-called “abstraction/filtration/comparison” test.

Under that test, a court should first “dissect the

allegedly copied program’s structure and isolate each

level of abstraction contained within it.” Altai, 982

F.2d at 707. Then, the court should “filter[] . . .

protectable expression from non-protectable

material.” Id. After isolating the “golden nugget” of

“protectable expression,” the court should inquire

“whether the defendant copied any aspect of this

protected expression.” Id. at 710.

The Second Circuit has distinguished its

approach from the Third Circuit’s “inadequate . . .

formulation that a program’s overall purpose equates

with the program’s idea.” Id. at 705. The First

Circuit, in turn, rejected the Second Circuit’s test,

finding it “misleading” because “abstracting menu

command hierarchies down to their individual word

and menu levels and then filtering idea from

expression at that stage . . . obscures the more

fundamental question of whether a menu command

hierarchy can be copyrighted at all.” Lotus, 49 F.3d

at 815.

Like the Second Circuit, the Fifth and Tenth

Circuits employ the abstraction/filtration/comparison

test. See Eng’g Dynamics, Inc. v. Structural

Software, Inc., 26 F.3d 1335 (5th Cir. 1994); Eng’g

Dynamics, Inc. v. Structural Software, Inc., 46 F.3d

408 (5th Cir. 1995) (supplemental opinion); Gates

Rubber Co. v. Bando Chem. Indus., 9 F.3d 823 (10th

Cir. 1993). In adopting that test, the Tenth Circuit

18

expressly disagreed with Lotus, holding that

“although an element of a work may be characterized

as a method of operation, that element may

nevertheless contain expression that is eligible for

copyright protection.” Mitel, 124 F.3d at 1372. The

court opined that Section 102(b), despite its plain

text, does not withdraw copyright protection from

methods of operation. Instead, “sections 102(a) & (b)

interact to secure ideas for [the] public domain and to

set apart an author’s particular expression for

further scrutiny.” Id. That court thus “declin[ed] to

adopt the Lotus court’s approach to section 102(b),

and continue[d] to adhere to [its] abstraction-

filtration-comparison approach.” Id.

3. In addition to disagreeing about whether to

replace Section 102(b)’s plain language with one of

the court-created standards discussed above, the

courts of appeals have divided on related issues,

including the relevance of compatibility to

copyrightability. As noted above, the First and Sixth

Circuits treat compatibility and lock-in as important

if not dispositive considerations. The Second Circuit

agrees with those circuits that “compatibility

requirements of other programs with which a

program is designed to operate” are relevant to

copyrightability, as part of the “filtration” step of its

abstraction/filtration/comparison test. Altai, 982

F.2d at 709–10. In contrast, the Third Circuit held

that “compatibility with independently developed

application programs . . . is a commercial and

competitive objective which does not enter into the

somewhat metaphysical issue of whether particular

ideas and expressions have merged.” Apple

Computer, 714 F.2d at 1253.

19

The courts of appeals are similarly divided on

the merger doctrine. As noted above, the Sixth

Circuit has split from other courts of appeals by

holding that the merger doctrine precludes copyright

protection for elements of a computer program

necessary for interoperability. See Lexmark, 387

F.3d at 536. Other courts of appeals do not even

agree that the merger doctrine limits copyrightability

(in any way), holding that it is only an affirmative

defense to infringement after copyrightability has

been established—greatly diminishing its practical

importance. See, e.g., Kregos v. Associated Press, 937

F.2d 700, 705 (2d Cir. 1991); see also pp. 28–29,

infra.2

4. The decision below recognizes and deepens

the circuit split. The Federal Circuit held that, under

Ninth Circuit precedent: Section 102(b) does not

exclude systems or methods of operation from

copyright protection; a judicially-created abstraction/

filtration/comparison test governs instead;

“[i]nteroperability [a]rguments are [i]rrelevant to

[c]opyrightability”; the merger doctrine does not

restrict copyright protection for computer code

necessary for interoperability so long as the original

2 As the Federal Circuit recognized, the circuit courts’ disarray

is so complete that they do not even agree on the correct

standard of appellate review. App. 16 n.3. Compare Matthew

Bender & Co. v. West Publ’g Co., 158 F.3d 674, 681 (2d Cir.

1998) and North Coast Indus. v. Jason Maxwell, Inc., 972 F.2d

1031, 1035 (9th Cir. 1992) (clear-error standard) with Yankee

Candle Co. v. Bridgewater Candle Co., 259 F.3d 25, 34 n.5 (1st

Cir. 2001) and Publications Int’l, Ltd. v. Meredith Corp., 88 F.3d

473, 478 (7th Cir. 1996) (de novo standard).

20

author could have written the code in more than one

way; and merger plays no role in the copyrightability

analysis in any event. See App. 23, 24, 50.

If the Federal Circuit’s view of Ninth Circuit

precedent is correct, that circuit is in conflict with

other circuits on all of those important points of law.

If the Federal Circuit’s understanding of Ninth

Circuit law is wrong, the Ninth Circuit is still in

conflict with the courts on the other sides of the

circuit splits. Either way, the longstanding division

in lower court authority persists and requires this

Court’s resolution.

II. The Federal Circuit’s Decision Runs Afoul

Of The Statute, This Court’s Controlling

Precedents, And The Distinction Between

Patent And Copyright.

As explained above, the Federal Circuit held that

the method headers are copyrightable even if they

constitute, or embody, systems or methods of

operation. App. 23; pp. 11–12, supra. That holding

is wrong. It is contrary to the text of the Copyright

Act, and it erases a fundamental boundary between

patent and copyright law.

A. The statute codifies this Court’s

exclusion of systems and methods of

operation from copyright protection.

Under Section 102(a), an “original work of

authorship” is generally copyrightable. Section

102(b) goes on to specify, however, that “in no case

does copyright protection for an original work of

authorship extend to any . . . system [or] method of

operation . . . regardless of the form in which it is

21

described, explained, illustrated, or embodied in such

work.” 17 U.S.C. § 102(b) (emphasis added). There

is nothing unclear or ambiguous about that

provision. Though an original work of authorship is

generally entitled to copyright protection, the

protection afforded to that work does not extend to

any systems or methods of operation included or

embodied in the work. The statutory exclusion is

explicit and absolute, governing “regardless of the

form in which [a system or method of operation] is

described, explained, illustrated, or embodied in such

work.” Id.

The Federal Circuit opined, however, that

“components of a program that can be characterized

as a ‘method of operation’ may nevertheless be

copyrightable.” App. 44. To reach that result, the

court had to revise the statute, and it did: “Section

102(a) and 102(b) are to be considered collectively so

that certain expressions are subject to greater

scrutiny.” App. 23. The court did not explain whence

this “greater scrutiny” test comes—it certainly does

not come from the statutory text. The court did not

explain what “greater scrutiny” means or how to

apply it. Nor did the court even appear to apply

greater scrutiny; it simply held that because Sun

could have written the method headers in different

ways, they were copyrightable. See App. 47.

The Federal Circuit’s error is especially stark

because this Court determined more than twenty

years ago that Section 102(b) “identifies specifically

those elements of a work for which copyright is not

available.” Feist, 499 U.S. at 356. The Court said

nothing in Feist about replacing that specific,

22

statutory identification with a vague “greater

scrutiny” test.

Ignoring this Court’s interpretation of Section

102(b), the court of appeals looked instead to the

legislative history. App. 23. Legislative history can

never displace clear statutory text. See Milner v.

Dep’t of Navy, 131 S. Ct. 1259, 1267 (2011). And

here, the legislative history specifically confirms that

Section 102(b) means what it says: “processes or

methods embodied in [a computer] program are not

within the scope of the copyright law.” H.R. REP. NO.

94-1476, at 57 (1976).

The Federal Court pointed to a different passage

in the legislative history that indicates, as this Court

has explained, that Section 102(b) did not change

preexisting law, “but merely clarified it.” Feist, 499

U.S. at 356; see also H.R. REP. NO. 94-1476, at 57; S.

REP. NO. 94-473, at 54 (1975). That observation is

fully consistent with the clear statutory text and the

on-point legislative history quoted above. This Court

had held, many decades before the 1976 Copyright

Act, that systems and methods of operation (along

with specific elements of expression that are

“necessary incidents” to them) are not copyrightable.

Baker v. Selden, 101 (11 Otto) U.S. 99, 103 (1880).

In Baker, Selden developed an accounting system

and wrote a book explaining it. Id. at 100. He

included in the book “certain forms or blanks,

consisting of ruled lines, and headings, illustrating

the system and showing how it is to be used and

carried out in practice.” Id. Selden contended that

“the ruled lines and headings, given to illustrate the

23

system, are a part of the book, and, as such, are

secured by the copyright.” Id. at 101.

This Court rejected Selden’s argument; the forms

were not copyrightable. The Court explained that

“there is a clear distinction between the book, as

such, and the art which it is intended to illustrate.”

Id. at 102. “The copyright of a work,” in other words,

“cannot give to the author an exclusive right to the

methods of operation which he propounds, or to the

diagrams which he employs to explain them.” Id. at

103 (emphasis added).

In light of that holding, the Federal Circuit’s

decision runs headlong into not one, but two

controlling decisions of this Court—Feist and Baker.

The Federal Circuit attempted to distinguish Baker

on the ground that it merely stands for a dichotomy

between unprotectable ideas and protectable

expression. App. 19. But nothing in Baker supports

that interpretation. The case never even discusses

that dichotomy. In any event, Section 102(b) codified

Baker by unambiguously excluding systems and

methods of operation from copyright protection, not

by adopting a vague “greater scrutiny” test.

B. Systems and methods of operation are

governed by patent, not copyright, law.

The Federal Circuit’s error is confirmed by the

extent to which it would eliminate a fundamental

distinction between patent and copyright law—and

thus allow copyright to be used as an end-run around

the limits on patent protection, including this Court’s

recent decisions on patent-eligibility.

24

1. The Baker Court determined that the Patent

Act, rather than the Copyright Act, governs the

protectability of methods and systems. “The

description of the art in a book, though entitled to the

benefit of copyright, lays no foundation for an

exclusive claim to the art itself.” Baker, 101 U.S. at

105. “The object of the one is explanation; the object

of the other is use. The former may be secured by

copyright. The latter can only be secured, if it can be

secured at all, by letters-patent.” Id.

Thus, under Baker and Section 102(b), copyright

cannot be used to secure a monopoly on a system or

method of operating something. “[T]he rules and

methods of useful art have their final end in

application and use; and this application and use are

what the public derive from the publication of a book

which teaches them.” Id. at 104. In the absence of a

patent, “any person may practise and use the art

itself.” Id.

For this reason as well, the Federal Circuit’s

focus on whether there is more than one way to

structure a system of method headers misses the

point. There are, for example, many possible ways to

design a keyboard, shorthand system, or accounting

system. But under Section 102(b), no system or

method of operation is protected by copyright.

2. Dismantling that boundary between patent

and copyright protection would wreak havoc in the

field of intellectual property by granting

unwarranted, 95-year (or longer) monopolies on the

basic building blocks of innovation. Unlike a claim to

a copyright, “[t]he claim to an invention or discovery

of an art or manufacture must be subjected to the

25

examination of the Patent Office before an exclusive

right therein can be obtained; and it can only be

secured by a patent from the government.” Id. at

102. The Patent Act imposes strict limits on

patentability to ensure that a government-granted

monopoly on use of an invention will serve its

purpose of encouraging inventions and discoveries.

See, e.g., 35 U.S.C. §§ 101, 102, 103; KSR Int’l Co. v.

Teleflex Inc., 550 U.S. 398, 427 (2007).

Just last Term, this Court confirmed that, while

some software-related patent claims may be eligible

for patent protection under 35 U.S.C. § 101, many

are not. Alice Corp. Pty. Ltd. v. CLS Bank Int’l, 134

S. Ct. 2347, 2358–59 (2014). Like Section 102(b) of

the Copyright Act, Section 101 of the Patent Act

protects future innovation by preventing anyone from

“‘inhibit[ing] further discovery by improperly tying

up the future use of’ the[] building blocks of human

ingenuity.” Id. at 2354 (quoting Mayo Collaborative

Servs. v. Prometheus Labs., Inc., 132 S. Ct. 1289,

1301 (2012)).

Extending copyright protection to methods and

systems of operation would undermine the limits on

patent protection. While the requirements for

patentability are strict, Section 102(b) is the only

requirement for copyrightability that does not

present a very “low bar.” App. 17. Under Section

102(a), copyright protection is generally available for

original works. The “originality requirement is not

particularly stringent,” requiring “only that the work

was independently created by the author (as opposed

to copied from other works), and that it possesses at

26

least some minimal degree of creativity.” Feist, 499

U.S. at 345, 358.

The threshold eligibility bar of Section 102(a) is

so low as to be essentially non-existent for computer

software, as confirmed by the Federal Circuit’s focus

on whether Sun could have written the method

headers in different ways. If one disregards the need

to be compatible with other systems or programs, as

the Federal Circuit did, there will nearly always be

more than one way to write software code to

accomplish a particular function (such as choosing

the greater of two numbers), just as this sentence

could have been written a dozen different ways

without changing its import. Thus, virtually every

element of every computer programming system or

language would qualify for copyright protection

under the court of appeals’ approach.

As Baker concluded, “[t]o give to the author of

the [work] an exclusive property in the art described

therein, when no examination of its novelty has ever

been officially made, would be a surprise and a fraud

upon the public.” 101 U.S. at 102. And a long-lasting

fraud at that. Compared to the 20-year patent term,

a copyright confers monopoly rights that can last for

well over a century—for the remaining life of the

author plus 70 years, for 95 years after first

publication, or for 120 years after creation. 17 U.S.C.

§ 302. Permitting such an end-run around the

carefully crafted limits on patent protection would

stifle competition and innovation in the software

industry—the very competition and innovation this

Court has sought to protect by enforcing the

27

comparable limits on patentability. See, e.g., Alice,

134 S. Ct. at 2354.

That does not, of course, mean that all computer

software is unprotected by copyright. There is no

dispute, for example, that the implementing code

that instructs a computer how to perform a method

may be subject to copyright protection. See 17 U.S.C.

§ 101 (defining “computer program[s]” that may

qualify as protectable works). But whether the

method headers are entitled to protection is

exclusively a question for patent law because the

headers constitute, or embody, a system or method of

operating the pre-written programs.

3. The Federal Circuit’s error is all the more

glaring because it is essentially the same error for

which this Court has repeatedly reversed the Federal

Circuit in patent cases. The court of appeals

criticized the district court for confusing “the

threshold question of what is copyrightable—which

presents a low bar—and the scope of conduct that

constitutes infringing activity.” App. 17. It then

transformed Section 102(b)’s limits on copyright

eligibility into just one of several factors to be

considered as part of a fair-use defense. See App. 50–

56.

The Federal Circuit had similarly held that the

limits on patent eligibility are minimal and that

other requirements of the Patent Act do the real

work in limiting monopoly protections. See, e.g.,

Research Corp. Techs., Inc. v. Microsoft Corp., 627

F.3d 859, 869 (Fed. Cir. 2010) (referring to Section

101 of the Patent Act as a “coarse eligibility filter”).

This Court has repeatedly corrected that

28

misperception in recent years, stressing the

importance of enforcing Section 101’s limits on

patentable subject matter—including for software-

related patents. See, e.g., Alice, 134 S. Ct. 2347;

Ass’n for Molecular Pathology v. Myriad Genetics,

Inc., 133 S. Ct. 2107 (2013); Mayo, 132 S. Ct. 1289;

Bilski v. Kappos, 130 S. Ct. 3218 (2010). But the

Federal Circuit would now eviscerate the analogous

limitation on copyright eligibility for some of the

same types of works.

The Federal Circuit’s error carries even more

dire consequences in the copyright context than it did

in the patent arena. There was at least a non-

frivolous argument that the limits on patent

eligibility were not exceptionally important because

other limits on patentability could do some of the

same work. See, e.g., Mayo, 132 S. Ct. at 1303–04

(rejecting the United States’ argument to that effect).

Here, such an argument would not even be colorable.

As discussed above, Section 102(b) places “any

idea, procedure, process, system, method of

operation, concept, principle, or discovery” in the

public domain, as a matter of law, by excluding it

from the scope of copyright protection. In contrast,

the fair-use defense applies to materials that are

within the scope of copyright protection, but blesses

unauthorized uses that satisfy a multi-factor

balancing test. See 17 U.S.C. § 107; App. 58–60. The

Federal Circuit underscored the difference between

the two by indicating that compatibility and lock-in

are, in its view, not even the most important factors

for a jury to consider as part of the fair-use inquiry.

See App. 68.

29

In Lotus, the district court concluded, based on

the facts of that case, that the defendant’s use of the

menu command hierarchy was not a fair use. Lotus

Dev. Corp. v. Borland Int’l, Inc., 831 F. Supp. 223,

240–45 (D. Mass. 1993), rev’d, 49 F.3d 807 (1st Cir.

1995). As the First Circuit recognized, however,

Section 102(b)’s exclusion of the hierarchy from

copyright protection controlled the outcome, making

consideration of fair use unnecessary. 49 F.3d at

819.

C. The Java method headers are a system

or method of operation.

This case illustrates the importance of applying

Section 102(b) as written. The Java method headers,

which enable programmers to use the familiar

shorthand commands based on them, are certainly a

system or method of operating the pre-written

programs of the Java language and platform.

“All agree that Google was and remains free to

use the Java language itself.” App. 108. That

language is made up of “keywords and other symbols”

as well as methods, “a set of pre-written programs to

carry out various commands.” App. 106. As

discussed above, programmers call the pre-written

methods with shorthand commands that work only in

software platforms that use the Java method

headers. See pp. 6–8, supra.

The Second Circuit (including Learned Hand) long

ago recognized that there is no “exclusive right to the

use of a published system of shorthand.” Brief

English Sys., Inc. v. Owen, 48 F.2d 555, 556 (2d Cir.

1931). Under Baker, a “system of condensing written

30

words into less than the number of letters usually

used to spell them out” could be protected, if at all,

only “by letters patent and not by copyright.” Id.

(Under the Federal Circuit’s approach, presumably

that case would have come out differently because

there is more than one imaginable system of English

shorthand; that absurd result illustrates how far

from Baker the Federal Circuit strayed.)

As Oracle’s then-CEO Larry Ellison testified,

moreover, “[t]he [Java] API’s are a command

structure.” C.A. App. 20457. If Google had not

replicated the method headers exactly, code that used

the shorthand commands based on those headers

would not have run on Android. See pp. 9–10, supra.

Google took pains to replicate only the elements

necessary to allow programmers to use the shorthand

commands (i.e., it copied only the method headers)—

not the code that actually implements or performs

the methods. App. 109. Computer programmers’

investment of time and resources in learning the

shorthand commands confirms that the

corresponding method headers, from which the

shorthand commands are derived, constitute or

embody the system or method of operating the pre-

written programs of the underlying platform.

Compatibility and lock-in concerns confirm the

applicability of both Section 102(b) and, in the

alternative, the merger doctrine. If one must use

specific computer code in order to operate computer

programs such as the pre-written programs at issue

here, that means, almost by definition, that the

copied code is part of a system or method of operating

the programs. See, e.g., Lotus, 49 F.3d at 817–18. As

31

discussed above, Google replicated the method

headers so that computer programmers could operate

the pre-written programs using the familiar

shorthand commands derived from the headers. If

Google changed the headers, the commands would

not successfully operate the methods.

Copyright cannot lock up this system or method

of operation any more than it could lock up the

QWERTY keyboard. Pressing a key on a QWERTY

keyboard sends a command that causes a computer

to perform a specific function, such as drawing a “Q”

on the screen. QWERTY is thus both a keyboard

design and a command structure for causing

computers of all kinds to produce letters and

symbols—just as the method headers are the

command structure for using the pre-written

programs in the Java and Android platforms.

Oracle and the Federal Circuit have emphasized

that, because Google replicated the method headers

from only 37 of the Java packages, programs written

in Java for the Java platform will not necessarily run

as intended on the Android platform. App. 56–57.

As the district court observed, however, “imperfect

interoperability, and Oracle’s angst over it,” only

prove the point by “illustrat[ing] the character of the

command structure as a functional system or method

of operation.” App. 160.

There is no dispute that Google replicated the

method headers that were most important for mobile

devices precisely because of the lock-in effect: like

computer users who are familiar with the QWERTY

keyboard layout, programmers were already

accustomed to using the Java shorthand commands

32

based on the headers. App. 58. Google’s decision not

to use more than it needed for a mobile-device

platform certainly does not expand the scope of

Oracle’s copyright protection, any more than a

decision to omit the number keys on a keyboard

would make a copyright claim for QWERTY more

plausible.

Indeed, this case is a prime example of the

importance of compatibility and lock-in.

Programmers have invested significant time and

effort in learning the Java language, including the

shorthand commands. See p. 2, supra. But now, long

after Sun lured computer programmers into the Java

community and after any patent protection likely

would have expired, Sun’s successor Oracle is

attempting to build a wall around use of Java’s

method headers. That would work precisely the

“surprise and . . . fraud” on the public that Baker

sought to prevent. See 101 U.S. at 102.

III. This Case Presents a Recurring Question of

Exceptional Importance.

This case is an ideal vehicle for considering the

question this Court tried to resolve in Lotus. As

discussed above, this case alone is exceptionally

important, as it involves both a ubiquitous interface

(the method headers of the Java programming

language) and a product relied on by many millions

of people daily (the Android platform).

Moreover, the district court’s detailed factual

findings and the Federal Circuit’s legal analysis

cleanly present the question presented. Although the

Federal Circuit remanded for a retrial on fair use,

33

the court of appeals definitively resolved the

threshold legal question presented in this petition.

There is no need to await a second trial on fair use

before considering that question—especially

considering the pressing need for this Court’s

resolution.

The decision below is casting a pall over

computer hardware and software development. See,

e.g., Van Lindberg, The Copyrightability Of APIs In

The Land Of OpenStack (2014), available at http://

www.rackspace.com/blog/the-copyrightability-of-apis-

in-the-land-of-openstack/. As history has shown, the

ability to build on existing interfaces in creating new

products and services is a critical driver of innovation

in the computer and software fields.

When IBM created the personal computer, for

example, it developed an interface called the Basic

Input/Output System. Competitors like Compaq and

Phoenix re-implemented that system to create their

own IBM-compatible computers, increasing the

number of choices available to consumers. See

Charles H. Ferguson & Charles R. Morris, Computer

Wars: The Post-IBM World 53–55 (1994). Later,

Apple used the pre-existing UNIX application

programming interface in its computers’ operating

system, allowing programmers familiar with UNIX to

write software that could run on Apple’s innovative

computers. See Joe Wilcox, Will OS X’s Unix Roots

Help Apple Grow?, CNET.com (May 21, 2001).

Oracle built upon the Linux operating system in

much the same way. See generally Oracle Corp.,

Frequently Asked Questions, Oracle Linux (2014),

available at http://www.oracle.com/us/technologies/

34

027617.pdf. And in order to compete in the word-

processing field, Microsoft re-implemented

WordPerfect’s interface so that Microsoft Word, a

competing product, could open documents created in

WordPerfect. Br. of Amici Curiae Rackspace US, Inc.

et al., at 12–13, Oracle Am., Inc. v. Google Inc., Dkt.

No. 116, Nos. 13-1021, et al. (Fed. Cir. May 30, 2013).

As these examples show, innovation depends on

software developers’ ability to achieve compatibility

with, and build on, what has come before as they

create new products and services.

The need to use existing interfaces without fear

of copyright liability is even more essential in today’s

interconnected world. Cloud computing, for example,

allows users to access virtual storage facilities and

processing power from anywhere in the world via the

Internet. See Amazon Web Services, AWS Products

& Solutions (2014), available at http://aws.amazon.

com/. Because the major cloud computing providers

(Amazon, Eucalyptus, and CloudStack) use

compatible interfaces, consumers are able to switch

platforms and services seamlessly regardless of

which browser or operating system they use. Steven

J. Vaughan-Nichols, OpenStack vs. CloudStack: The

Beginning of the Open-Source Cloud Wars, ZDNet

(Apr. 12, 2012), available at http://www.zdnet.

com/blog/open-source/openstack-vs-cloudstack-the-be

ginning-of-the-open-source-cloud-wars/10763. Those

services compete with each other to provide the best

implementations of the cloud-services interface; none

should be entitled to an exclusive right to use the

method of operation itself.

35

To take another example, millions of people use a

computer program called Wine to make Microsoft

Windows programs run on different operating

systems. Wine works by re-implementing the

Windows interface so that Windows programs will

run on other operating systems. WineHQ, About

Wine, available at http://www.winehq.org/about/. If

Microsoft could threaten Wine with copyright

liability, Wine could be shut down, depriving its

customers of the ability to run Windows-based

software on their computers.

Domestic and international laws also reflect the

importance of protecting the public’s right to use

interfaces freely, without risking copyright liability.

Congress has authorized “reverse engineering” for

the “purpose of identifying and analyzing those

elements of the program that are necessary to

achieve interoperability of an independently created

computer program with other programs.” 17 U.S.C.

§ 1201(f). The European Union’s Software Directive

similarly provides a broad exception from liability for

“black box reverse engineering.” Council of Ministers

Directive 91/250/EEC of 14 May 1991 on the Legal

Protection of Computer Programs, Art. 5(3), 1991

O.J. (L 122).

Those laws make sense because, after identifying

and analyzing the computer code that is necessary to

achieve interoperability, developers are free to use it,

as Google did here. Indeed, the European Union’s

highest court recently held that “neither the

functionality of a computer program nor the

programming language and the format of data files

used in a computer program in order to exploit

36

certain of its functions constitute a form of expression

of that program and, as such, are not protected by

copyright.” SAS Institute Inc. v. World Programming

Ltd. Case C-406/10 ¶ 71, 2012 E.C.L.I 259, [2012] 3

C.M.L.R. 4. A contrary conclusion would “amount to

making it possible to monopolise ideas, to the

detriment of technological progress and industrial

development.” Id. ¶ 40.

As these real-world examples and laws reflect,

the developer community has long understood that

interfaces are free for everyone to use. That

understanding has enabled all of the innovation

described above, and much more. The Federal

Circuit’s decision turns this understanding on its

head, balkanizing computer languages and

interfaces, requiring programmers to build from the

ground up, precluding interoperability, and depriving

consumers of the benefits of compatibility. At a bare

minimum, that would make innovation much costlier

and raise severe barriers to entry.

The decision below also inflicts particular and

immediate hardship on smaller companies and start-

ups—major sources of jobs and innovation. See Tim

Kane, Ewing Marion Kauffman Foundation, The

Importance of Startups in Job Creation and Job

Destruction 3 (2010). These start-ups (the ranks of

which Google, Sun, and Oracle once were members)

are characterized by extraordinary creativity. They

are innovating all the time, building on existing

technology to bring products and services to market.

To attract customers, these new market entrants

must build on what has come before.

37

Consider how difficult it would have been for

Tesla to build an electric car if the familiar

arrangement and functions of a steering wheel,

accelerator, and brake pedal were protected. The

Java method headers and shorthand commands

derived from them are to today’s software

programmers as those standard controls are to

today’s drivers—crucial methods for operating a

complex system.

Delay in resolving this issue would magnify the

harm caused by the decision below by impairing

important innovation now in the fast-moving, high-

technology sector. Just last Term, this Court granted

review of an important copyright case even though

there was no circuit split, and barely any percolation

in the courts of appeals, because of the need for a

timely ruling. See Am. Broad. Cos. v. Aereo, Inc., 134

S. Ct. 2498 (2014). This case is no less important, as

confirmed by the filing of eleven amicus briefs by

dozens of amici (on both sides) in the court of

appeals. Especially considering the clear and well-

recognized circuit split on this issue, and the fact

that this Court has already recognized the issue’s

certworthiness by granting review in Lotus, the

Court should resolve this important and pressing

issue now.

CONCLUSION

The petition for a writ of certiorari should be

granted.

38

Respectfully submitted.

BRUCE W. BABER

KING & SPALDING LLP

1180 Peachtree Street, NE

Atlanta, GA 30309

ROBERT A. VAN NEST

STEVEN A. HIRSCH

CHRISTA M. ANDERSON

MICHAEL S. KWUN

DAN JACKSON

KEKER & VAN NEST LLP

633 Battery Street

San Francisco, CA 94111

DARYL L. JOSEFFER

 Counsel of Record

ASHLEY C. PARRISH

ADAM M. CONRAD

ETHAN P. DAVIS

KING & SPALDING LLP

1700 Pennsylvania Ave., NW

Washington, DC 20006

(202) 737-0500

djoseffer@kslaw.com

RENNY HWANG

GOOGLE INC.

1600 Amphitheatre Parkway

MOUNTAIN VIEW, CA 94043

Counsel for Petitioner

mailto:djoseffer@kslaw.com

APPENDIX

App-i

TABLE OF APPENDICES

Appendix A

Opinion of the United States Court

of Appeals for the Federal Circuit

(May 9, 2014) .. App-1

Appendix B

Order Partially Granting and

Partially Denying Defendant’s

Motion for Summary Judgment on

Copyright Claim of the United States

District Court for Northern District

of California (Sept. 15, 2011) App-79

Appendix C

Order on Motions for Judgment as a

Matter of Law of the United States

District Court for Northern District

of California (May 10, 2012) App-99

Appendix D

Order Regarding Copyrightability of

Certain Replicated Elements of the

Java Application Programming

Interface of the United States

District Court for Northern District

of California (May 31, 2012) App-100

App-ii

Appendix E

Findings of Fact and Conclusions of

Law on Equitable Defenses of the

United States District Court for

Northern District of California (May

31, 2012) .. App-165

Appendix F

Final Judgment of the United States

District Court for Northern District

of California (June 20, 2012) App-169

Appendix G

Order Denying Motion for Judgment

as a Matter of Law and New Trial of

the United States District Court for

the Northern District of California

(July 13, 2012) .. App-172

Appendix H

Order Denying Motion for Judgment

as a Matter of Law and New Trial of

the United States District Court for

the Northern District of California

(Sept. 4, 2012) ... App-173

Appendix I

17 U.S.C. § 101 App-174

17 U.S.C. § 102 App-188

App-1

Appendix A

United States Court of Appeals

for the Federal Circuit

ORACLE AMERICA, INC.,

Plaintiff-Appellant,

v.

GOOGLE INC.,

Defendant-Cross-Appellant.

2013-1021, -1022

Appeals from the United States District Court for the

Northern District of California in No. 10-CV-3561,

Judge William H. Alsup.

Decided: May 9, 2014

* * *

Before O’MALLEY, PLAGER, and TARANTO,

Circuit Judges

O’MALLEY, Circuit Judge.

This copyright dispute involves 37 packages of

computer source code. The parties have often

referred to these groups of computer programs,

individually or collectively, as “application

App-2

programming interfaces,” or API packages, but it is

their content, not their name, that matters. The

predecessor of Oracle America, Inc. (“Oracle”) wrote

these and other API packages in the Java

programming language, and Oracle licenses them on

various terms for others to use. Many software

developers use the Java language, as well as Oracle’s

API packages, to write applications (commonly

referred to as “apps”) for desktop and laptop

computers, tablets, smartphones, and other devices.

Oracle filed suit against Google Inc. (“Google”) in

the United States District Court for the Northern

District of California, alleging that Google’s Android

mobile operating system infringed Oracle’s patents

and copyrights. The jury found no patent

infringement, and the patent claims are not at issue

in this appeal. As to the copyright claims, the parties

agreed that the jury would decide infringement, fair

use, and whether any copying was de minimis, while

the district judge would decide copyrightability and

Google’s equitable defenses. The jury found that

Google infringed Oracle’s copyrights in the 37 Java

packages and a specific computer routine called

“rangeCheck,” but returned a noninfringement

verdict as to eight decompiled security files. The jury

deadlocked on Google’s fair use defense.

After the jury verdict, the district court denied

Oracle’s motion for judgment as a matter of law

(“JMOL”) regarding fair use as well as Google’s

motion for JMOL with respect to the rangeCheck

files. Order on Motions for Judgment as a Matter of

Law, Oracle Am., Inc. v. Google Inc., No. 3:10-cv-3561

(N.D. Cal. May 10, 2012), ECF No. 1119. Oracle also

App-3

moved for JMOL of infringement with respect to the

eight decompiled security files. In granting that

motion, the court found that: (1) Google admitted to

copying the eight files; and (2) no reasonable jury

could find that the copying was de minimis. Oracle

Am., Inc. v. Google Inc., No. C 10-3561, 2012 U.S.

Dist. LEXIS 66417 (N.D. Cal. May 11, 2012) (“Order

Granting JMOL on Decompiled Files”).

Shortly thereafter, the district court issued its

decision on copyrightability, finding that the

replicated elements of the 37 API packages—

including the declaring code and the structure,

sequence, and organization—were not subject to

copyright protection. Oracle Am., Inc. v. Google Inc.,

872 F. Supp. 2d 974 (N.D. Cal. 2012)

(“Copyrightability Decision”). Accordingly, the district

court entered final judgment in favor of Google on

Oracle’s copyright infringement claims, except with

respect to the rangeCheck code and the eight

decompiled files. Final Judgment, Oracle Am., Inc. v.

Google Inc., No. 3:10-cv-3561 (N.D. Cal. June 20,

2012), ECF No. 1211. Oracle appeals from the portion

of the final judgment entered against it, and Google

cross-appeals from the portion of that same judgment

entered in favor of Oracle as to the rangeCheck code

and eight decompiled files.

Because we conclude that the declaring code and

the structure, sequence, and organization of the API

packages are entitled to copyright protection, we

reverse the district court’s copyrightability

determination with instructions to reinstate the

jury’s infringement finding as to the 37 Java

packages. Because the jury deadlocked on fair use,

App-4

we remand for further consideration of Google’s fair

use defense in light of this decision. With respect to

Google’s cross-appeal, we affirm the district court’s

decisions: (1) granting Oracle’s motion for JMOL as

to the eight decompiled Java files that Google copied

into Android; and (2) denying Google’s motion for

JMOL with respect to the rangeCheck function.

Accordingly, we affirm-in-part, reverse-in-part, and

remand for further proceedings.

BACKGROUND

A. The Technology

Sun Microsystems, Inc. (“Sun”) developed the

Java “platform” for computer programming and

released it in 1996.1 The aim was to relieve

programmers from the burden of writing different

versions of their computer programs for different

operating systems or devices. “The Java platform,

through the use of a virtual machine, enable[d]

software developers to write programs that [we]re

able to run on different types of computer hardware

without having to rewrite them for each different

type.” Copyrightability Decision, 872 F. Supp. 2d at

977. With Java, a software programmer could “write

once, run anywhere.”

The Java virtual machine (“JVM”) plays a

central role in the overall Java platform. The Java

programming language itself—which includes words,

symbols, and other units, together with syntax rules

for using them to create instructions—is the

language in which a Java programmer writes source

1 Oracle acquired Sun in 2010.

App-5

code, the version of a program that is “in a human-

readable language.” Id. For the instructions to be

executed, they must be converted (or compiled) into

binary machine code (object code) consisting of 0s and

1s understandable by the particular computing

device. In the Java system, “source code is first

converted into ‘bytecode,’ an intermediate form,

before it is then converted into binary machine code

by the Java virtual machine” that has been designed

for that device. Id. The Java platform includes the

“Java development kit (JDK), javac compiler, tools

and utilities, runtime programs, class libraries (API

packages), and the Java virtual machine.” Id. at 977

n.2.

Sun wrote a number of ready-to-use Java

programs to perform common computer functions

and organized those programs into groups it called

“packages.” These packages, which are the

application programming interfaces at issue in this

appeal, allow programmers to use the prewritten

code to build certain functions into their own

programs, rather than write their own code to

perform those functions from scratch. They are

shortcuts. Sun called the code for a specific operation

(function) a “method.” It defined “classes” so that

each class consists of specified methods plus

variables and other elements on which the methods

operate. To organize the classes for users, then, it

grouped classes (along with certain related

“interfaces”) into “packages.” See id. at 982

(describing organization: “[e]ach package [i]s broken

into classes and those in turn [are] broken into

methods”). The parties have not disputed the district

court’s analogy: Oracle’s collection of API packages is

App-6

like a library, each package is like a bookshelf in the

library, each class is like a book on the shelf, and

each method is like a how-to chapter in a book. Id. at

977.

The original Java Standard Edition Platform

(“Java SE”) included “eight packages of pre-written

programs.” Id. at 982. The district court found, and

Oracle concedes to some extent, that three of those

packages—java.lang, java.io, and java.util—were

“core” packages, meaning that programmers using

the Java language had to use them “in order to make

any worthwhile use of the language.” Id. By 2008, the

Java platform had more than 6,000 methods making

up more than 600 classes grouped into 166 API

packages. There are 37 Java API packages at issue in

this appeal, three of which are the core packages

identified by the district court.2 These packages

contain thousands of individual elements, including

classes, subclasses, methods, and interfaces.

Every package consists of two types of source

code—what the parties call (1) declaring code; and

(2) implementing code. Declaring code is the

2 The 37 API packages involved in this appeal are:

java.awt.font, java.beans, java.io, java.lang, java.lang.

annotation, java.lang.ref, java.lang.reflect, java. net, java.nio,

java.nio.channels, java.nio.channels.spi, java.nio.charset, java.

nio.charset.spi, java.security, java. security.acl, java.security.

cert, java.security.interfaces, java.security.spec, java.sql, java.

text, java.util, java. util.jar, java.util.logging, java.util.prefs,

java.util.regex, java.util.zip, javax.crypto, javax.crypto.

interfaces, javax.crypto.spec, javax.net, javax.net.ssl, javax.

security.auth, javax. security.auth.callback, javax.security.

auth.login, javax.security.auth.x500, javax.security.cert, and

javax.sql.

App-7

expression that identifies the prewritten function and

is sometimes referred to as the “declaration” or

“header.” As the district court explained, the “main

point is that this header line of code introduces the

method body and specifies very precisely the inputs,

name and other functionality.” Id. at 979–80. The

expressions used by the programmer from the

declaring code command the computer to execute the

associated implementing code, which gives the

computer the step-by-step instructions for carrying

out the declared function.

To use the district court’s example, one of the

Java API packages at issue is “java.lang.” Within

that package is a class called “math,” and within

“math” there are several methods, including one that

is designed to find the larger of two numbers: “max.”

The declaration for the “max” method, as defined for

integers, is: “public static int max(int x, int y),” where

the word “public” means that the method is generally

accessible, “static” means that no specific instance of

the class is needed to call the method, the first “int”

indicates that the method returns an integer, and

“int x” and “int y” are the two numbers (inputs) being

compared. Copyrightability Decision, 872 F. Supp. 2d

at 980–82. A programmer calls the “max” method by

typing the name of the method stated in the

declaring code and providing unique inputs for the

variables “x” and “y.” The expressions used command

the computer to execute the implementing code that

carries out the operation of returning the larger

number.

Although Oracle owns the copyright on Java SE

and the API packages, it offers three different

App-8

licenses to those who want to make use of them. The

first is the General Public License, which is free of

charge and provides that the licensee can use the

packages—both the declaring and implementing

code—but must “contribute back” its innovations to

the public. This arrangement is referred to as an

“open source” license. The second option is the

Specification License, which provides that the

licensee can use the declaring code and organization

of Oracle’s API packages but must write its own

implementing code. The third option is the

Commercial License, which is for businesses that

“want to use and customize the full Java code in their

commercial products and keep their code secret.”

Appellant Br. 14. Oracle offers the Commercial

License in exchange for royalties. To maintain Java’s

“write once, run anywhere” motto, the Specification

and Commercial Licenses require that the licensees’

programs pass certain tests to ensure compatibility

with the Java platform.

The testimony at trial also revealed that Sun

was licensing a derivative version of the Java

platform for use on mobile devices: the Java Micro

Edition (“Java ME”). Oracle licensed Java ME for use

on feature phones and smartphones. Sun/Oracle has

never successfully developed its own smartphone

platform using Java.

B. Google’s Accused Product: Android

The accused product is Android, a software

platform that was designed for mobile devices and

competes with Java in that market. Google acquired

Android, Inc. in 2005 as part of a plan to develop a

smartphone platform. Later that same year, Google

App-9

and Sun began discussing the possibility of Google

“taking a license to use and to adapt the entire Java

platform for mobile devices.” Copyrightability

Decision, 872 F. Supp. 2d at 978. They also discussed

a “possible co-development partnership deal with Sun

under which Java technology would become an open-

source part of the Android platform, adapted for

mobile devices.” Id. The parties negotiated for

months but were unable to reach an agreement. The

point of contention between the parties was Google’s

refusal to make the implementation of its programs

compatible with the Java virtual machine or

interoperable with other Java programs. Because

Sun/Oracle found that position to be anathema to the

“write once, run anywhere” philosophy, it did not

grant Google a license to use the Java API packages.

When the parties’ negotiations reached an

impasse, Google decided to use the Java

programming language to design its own virtual

machine—the Dalvik virtual machine (“Dalvik

VM”)—and “to write its own implementations for the

functions in the Java API that were key to mobile

devices.” Id. Google developed the Android platform,

which grew to include 168 API packages—37 of

which correspond to the Java API packages at issue

in this appeal.

With respect to the 37 packages at issue, “Google

believed Java application programmers would want

to find the same 37 sets of functionalities in the new

Android system callable by the same names as used

in Java.” Id. To achieve this result, Google copied the

declaring source code from the 37 Java API packages

verbatim, inserting that code into parts of its Android

App-10

software. In doing so, Google copied the elaborately

organized taxonomy of all the names of methods,

classes, interfaces, and packages—the “overall

system of organized names—covering 37 packages,

with over six hundred classes, with over six thousand

methods.” Copyrightability Decision, 872 F. Supp. 2d

at 999. The parties and district court referred to this

taxonomy of expressions as the “structure, sequence,

and organization” or “SSO” of the 37 packages. It is

undisputed, however, that Google wrote its own

implementing code, except with respect to: (1) the

rangeCheck function, which consisted of nine lines of

code; and (2)eight decompiled security files.

As to rangeCheck, the court found that the Sun

engineer who wrote it later worked for Google and

contributed two files he created containing the

rangeCheck function—“Timsort.java” and

“ComparableTimsort”—to the Android platform. In

doing so, the nine-line rangeCheck function was

copied directly into Android. As to the eight

decompiled files, the district court found that they

were copied and used as test files but “never found

their way into Android or any handset.” Id. at 983.

Google released the Android platform in 2007,

and the first Android phones went on sale the

following year. Although it is undisputed that certain

Android software contains copies of the 37 API

packages’ declaring code at issue, neither the district

court nor the parties specify in which programs those

copies appear. Oracle indicated at oral argument,

however, that all Android phones contain copies of

the accused portions of the Android software. Oral

Argument at 1:35, available at http://www.cafc.

App-11

uscourts.gov/oral-argument-recordings/2013-1021/all.

Android smartphones “rapidly grew in popularity

and now comprise a large share of the United States

market.” Copyrightability Decision, 872 F. Supp. 2d

at 978. Google provides the Android platform free of

charge to smartphone manufacturers and receives

revenue when customers use particular functions on

the Android phone. Although Android uses the Java

programming language, it is undisputed that

Android is not generally Java compatible. As Oracle

explains, “Google ultimately designed Android to be

incompatible with the Java platform, so that apps

written for one will not work on the other.” Appellant

Br. 29.

C. Trial and Post-Trial Rulings

Beginning on April 16, 2012, the district court

and the jury—on parallel tracks—viewed documents

and heard testimony from twenty-four witnesses on

copyrightability, infringement, fair use, and Google’s

other defenses. Because the parties agreed the

district court would decide copyrightability, the court

instructed the jury to assume that the structure,

sequence, and organization of the 37 API packages

was copyrightable. And, the court informed the jury

that Google conceded that it copied the declaring code

used in the 37 packages verbatim. The court also

instructed the jury that Google conceded copying the

rangeCheck function and the eight decompiled

security files, but that Google maintained that its use

of those lines of code was de minimis. See Final

Charge to the Jury (Phase One), Oracle Am., Inc. v.

Google Inc., 3:10-cv-3561 (N.D. Cal. Apr. 30, 2012),

ECF No. 1018 at 14 (“With respect to the

App-12

infringement issues concerning the rangeCheck and

other similar files, Google agrees that the accused

lines of code and comments came from the

copyrighted material but contends that the amounts

involved were so negligible as to be de minimis and

thus should be excused.”).

On May 7, 2012, the jury returned a verdict

finding that Google infringed Oracle’s copyright in

the 37 Java API packages and in the nine lines of

rangeCheck code, but returned a noninfringement

verdict as to eight decompiled security files. The jury

hung on Google’s fair use defense.

The parties filed a number of post-trial motions,

most of which were ultimately denied. In relevant

part, the district court denied Oracle’s motion for

JMOL regarding fair use and Google’s motion for

JMOL as to the rangeCheck files. Order on Motions

for Judgment as a Matter of Law, Oracle Am., Inc. v.

Google Inc., No. 3:10-cv-3561 (N.D. Cal. May 10,

2012), ECF No. 1119. The district court granted

Oracle’s motion for JMOL of infringement as to the

eight decompiled files, however. In its order, the

court explained that: (1) Google copied the files in

their entirety; (2) the trial testimony revealed that

the use of those files was “significant”; and (3) no

reasonable jury could find the copying de minimis.

Order Granting JMOL on Decompiled Files, 2012

U.S. Dist. LEXIS 66417, at *6.

On May 31, 2012, the district court issued the

primary decision at issue in this appeal, finding that

the replicated elements of the Java API packages—

including the declarations and their structure,

sequence, and organization—were not copyrightable.

App-13

As to the declaring code, the court concluded that

“there is only one way to write” it, and thus the

“merger doctrine bars anyone from claiming

exclusive copyright ownership of that expression.”

Copyrightability Decision, 872 F. Supp. 2d at 998.

The court further found that the declaring code was

not protectable because “names and short phrases

cannot be copyrighted.” Id. As such, the court

determined that “there can be no copyright violation

in using the identical declarations.” Id.

As to the overall structure, sequence, and

organization of the Java API packages, the court

recognized that “nothing in the rules of the Java

language . . . required that Google replicate the same

groupings even if Google was free to replicate the

same functionality.” Id. at 999. Therefore, the court

determined that “Oracle’s best argument . . . is that

while no single name is copyrightable, Java’s overall

system of organized names—covering 37 packages,

with over six hundred classes, with over six thousand

methods—is a ‘taxonomy’ and, therefore,

copyrightable.” Id.

Although it acknowledged that the overall

structure of Oracle’s API packages is creative,

original, and “resembles a taxonomy,” the district

court found that it “is nevertheless a command

structure, a system or method of operation—a long

hierarchy of over six thousand commands to carry

out pre-assigned functions”—that is not entitled to

copyright protection under Section 102(b) of the

Copyright Act. Id. at 999–1000. In reaching this

conclusion, the court emphasized that, “[o]f the 166

Java packages, 129 were not violated in any way.” Id.

App-14

at 1001. And, of the 37 Java API packages at issue,

“97 percent of the Android lines were new from

Google and the remaining three percent were freely

replicable under the merger and names doctrines.”

Id. On these grounds, the court dismissed Oracle’s

copyright claims, concluding that “the particular

elements replicated by Google were free for all to use

under the Copyright Act.” Id.

On June 20, 2012, the district court entered final

judgment in favor of Google and against Oracle on its

claim for copyright infringement, except with respect

to the rangeCheck function and the eight decompiled

files. As to rangeCheck and the decompiled files, the

court entered judgment for Oracle and against

Google in the amount of zero dollars, per the parties’

stipulation. Final Judgment, Oracle Am., Inc. v.

Google Inc., No. 3:10-cv-3561 (N.D. Cal. June 20,

2012), ECF No. 1211. Oracle timely appealed from

the portion of the district court’s final judgment

entered against it and Google timely crossappealed

with respect to rangeCheck and the eight decompiled

files. Because this action included patent claims, we

have jurisdiction pursuant to 28 U.S.C. § 1295(a)(1).

DISCUSSION

I. ORACLE’S APPEAL

It is undisputed that the Java programming

language is open and free for anyone to use. Except

to the limited extent noted below regarding three of

the API packages, it is also undisputed that Google

could have written its own API packages using the

Java language. Google chose not to do that. Instead,

it is undisputed that Google copied 7,000 lines of

App-15

declaring code and generally replicated the overall

structure, sequence, and organization of Oracle’s 37

Java API packages. The central question before us is

whether these elements of the Java platform are

entitled to copyright protection. The district court

concluded that they are not, and Oracle challenges

that determination on appeal. Oracle also argues

that the district court should have dismissed Google’s

fair use defense as a matter of law.

According to Google, however, the district court

correctly determined that: (1) there was only one way

to write the Java method declarations and remain

“interoperable” with Java; and (2) the organization

and structure of the 37 Java API packages is a

“command structure” excluded from copyright

protection under Section 102(b). Google also argues

that, if we reverse the district court’s copyrightability

determination, we should direct the district court to

retry its fair use defense.

“When the questions on appeal involve law and

precedent on subjects not exclusively assigned to the

Federal Circuit, the court applies the law which

would be applied by the regional circuit.” Atari

Games Corp. v. Nintendo of Am., Inc., 897 F.2d 1572,

1575 (Fed. Cir. 1990). Copyright issues are not

exclusively assigned to the Federal Circuit. See 28

U.S.C. § 1295. The parties agree that Ninth Circuit

law applies and that, in the Ninth Circuit, whether

particular expression is protected by copyright law is

App-16

“subject to de novo review.” Ets-Hokin v. Skyy

Spirits, Inc., 225 F.3d 1068, 1073 (9th Cir. 2000).3

We are mindful that the application of copyright

law in the computer context is often a difficult task.

See Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d

807, 820 (1st Cir. 1995) (Boudin, J., concurring)

(“Applying copyright law to computer programs is

3 The Supreme Court has not addressed whether

copyrightability is a pure question of law or a mixed question of

law and fact, or whether, if it is a mixed question of law and

fact, the factual components of that inquiry are for the court,

rather than the jury. Relatedly, it has not decided the standard

of review that applies on appeal. Ten years ago, before finding it

unnecessary to decide whether copyrightability is a pure

question of law or a mixed question of law and fact, the Seventh

Circuit noted that it had “found only a handful of appellate

cases addressing the issue, and they are split.” Gaiman v.

McFarlane, 360 F.3d 644, 648 (7th Cir. 2004). And, panels of the

Ninth Circuit have defined the respective roles of the jury and

the court differently where questions of originality were at

issue. Compare North Coast Indus. v. Jason Maxwell, Inc., 972

F.2d 1031, 1035 (9th Cir. 1992), with Ets-Hokin, 225 F.3d at

1073. More recently, several district courts within the Ninth

Circuit have treated copyrightability as a question for only the

court, regardless of whether it is a pure question of law. See

Stern v. Does, No. 09-1986, 2011 U.S. Dist. LEXIS 37735, *7

(C.D. Cal. Feb. 10, 2011); Jonathan Browning, Inc. v. Venetian

Casino Resort LLC, No. C 07-3983, 2009 U.S. Dist. LEXIS

57525, at *2 (N.D. Cal. June 19, 2009); see also Pivot Point Int’l,

Inc. v. Charlene Prods., Inc., 932 F. Supp. 220, 225 (N.D. Ill.

1996) (Easterbrook, J.) (citing to Markman v. Westview

Instruments, Inc., 517 U.S. 370 (1996), and concluding that

whether works are copyrightable is a question which the “jury

has nothing to do with”). We need not address any of these

questions, because the parties here agreed that the district

court would decide copyrightability, and both largely agree that

we may undertake a review of that determination de novo.

App-17

like assembling a jigsaw puzzle whose pieces do not

quite fit.”). On this record, however, we find that the

district court failed to distinguish between the

threshold question of what is copyrightable—which

presents a low bar—and the scope of conduct that

constitutes infringing activity. The court also erred

by importing fair use principles, including

interoperability concerns, into its copyrightability

analysis.

For the reasons that follow, we conclude that the

declaring code and the structure, sequence, and

organization of the 37 Java API packages are entitled

to copyright protection. Because there is an

insufficient record as to the relevant fair use factors,

we remand for further proceedings on Google’s fair

use defense.

A. Copyrightability

The Copyright Act provides protection to

“original works of authorship fixed in any tangible

medium of expression,” including “literary works.” 17

U.S.C. § 102(a). It is undisputed that computer

programs—defined in the Copyright Act as “a set of

statements or instructions to be used directly or

indirectly in a computer in order to bring about a

certain result,” 17 U.S.C. § 101—can be subject to

copyright protection as “literary works.” See Atari

Games Corp. v. Nintendo of Am., Inc., 975 F.2d 832,

838 (Fed. Cir. 1992) (“As literary works, copyright

protection extends to computer programs.”). Indeed,

the legislative history explains that “literary works”

includes “computer programs to the extent that they

incorporate authorship in the programmer’s

expression of original ideas, as distinguished from

App-18

the ideas themselves.” H.R. Rep. No. 1476, 94th

Cong., 2d Sess. 54, reprinted in 1976 U.S.C.C.A.N.

5659, 5667.

By statute, a work must be “original” to qualify

for copyright protection. 17 U.S.C. § 102(a). This

“originality requirement is not particularly

stringent,” however. Feist Publ’ns, Inc. v. Rural Tel.

Serv. Co., 499 U.S. 340, 358 (1991). “Original, as the

term is used in copyright, means only that the work

was independently created by the author (as opposed

to copied from other works), and that it possesses at

least some minimal degree of creativity.” Id. at 345.

Copyright protection extends only to the

expression of an idea—not to the underlying idea

itself. Mazer v. Stein, 347 U.S. 201, 217 (1954)

(“Unlike a patent, a copyright gives no exclusive right

to the art disclosed; protection is given only to the

expression of the idea—not the idea itself.”). This

distinction—commonly referred to as the

“idea/expression dichotomy”—is codified in Section

102(b) of the Copyright Act, which provides:

In no case does copyright protection for an

original work of authorship extend to any

idea, procedure, process, system, method of

operation, concept, principle, or discovery,

regardless of the form in which it is

described, explained, illustrated, or

embodied in such work.

17 U.S.C. § 102(b); see Golan v. Holder, 132 S. Ct.

873, 890 (2012) (“The idea/expression dichotomy is

codified at 17 U.S.C. § 102(b).”).

App-19

The idea/expression dichotomy traces back to the

Supreme Court’s decision in Baker v. Selden, 101

U.S. 99, 101 (1879). In Baker, the plaintiff Selden

wrote and obtained copyrights on a series of books

setting out a new system of bookkeeping. Id. at 100.

The books included an introductory essay explaining

the system and blank forms with ruled lines and

headings designed for use with that system. Id.

Baker published account books employing a system

with similar forms, and Selden filed suit alleging

copyright infringement. According to Selden, the

“ruled lines and headings, given to illustrate the

system, are a part of the book” and “no one can make

or use similar ruled lines and headings, or ruled lines

and headings made and arranged on substantially

the same system, without violating the copyright.”

Id. at 101.

The Supreme Court framed the issue on appeal

in Baker as “whether the exclusive property in a

system of book-keeping can be claimed, under the law

of copyright, by means of a book in which that system

is explained.” Id. In reversing the circuit court’s

decision, the Court concluded that the “copyright of a

book on book-keeping cannot secure the exclusive

right to make, sell, and use account-books prepared

upon the plan set forth in such book.” Id. at 104.

Likewise, the “copyright of a work on mathematical

science cannot give to the author an exclusive right

to the methods of operation which he propounds.” Id.

at 103. The Court found that, although the copyright

protects the way Selden “explained and described a

peculiar system of book-keeping,” it does not prevent

others from using the system described therein. Id. at

104. The Court further indicated that, if it is

App-20

necessary to use the forms Selden included in his

books to make use of the accounting system, that use

would not amount to copyright infringement. See id.

(noting that the public has the right to use the

account-books and that, “in using the art, the ruled

lines and headings of accounts must necessarily be

used as incident to it”).

Courts routinely cite Baker as the source of

several principles incorporated into Section 102(b)

that relate to this appeal, including that:

(1) copyright protection extends only to expression,

not to ideas, systems, or processes; and (2) “those

elements of a computer program that are necessarily

incidental to its function are . . . unprotectable.” See

Computer Assocs. Int’l v. Altai, 982 F.2d 693, 704–05

(2d Cir. 1992) (“Altai”) (discussing Baker, 101 U.S. at

103–04).

It is well established that copyright protection

can extend to both literal and non-literal elements of

a computer program. See Altai, 982 F.2d at 702. The

literal elements of a computer program are the

source code and object code. See Johnson Controls,

Inc. v. Phoenix Control Sys., Inc., 886 F.2d 1173, 1175

(9th Cir. 1989). Courts have defined source code as

“the spelled-out program commands that humans can

read.” Lexmark Int’l, Inc. v. Static Control

Components, Inc., 387 F.3d 522, 533 (6th Cir. 2004).

Object code refers to “the binary language comprised

of zeros and ones through which the computer

directly receives its instructions.” Altai, 982 F.2d at

698. Both source and object code “are consistently

held protected by a copyright on the program.”

Johnson Controls, 886 F.2d at 1175; see also Altai,

App-21

982 F.2d at 702 (“It is now well settled that the

literal elements of computer programs, i.e., their

source and object codes, are the subject of copyright

protection.”). Google nowhere disputes that premise.

See, e.g., Oral Argument at 57:38.

The non-literal components of a computer

program include, among other things, the program’s

sequence, structure, and organization, as well as the

program’s user interface. Johnson Controls, 886 F.2d

at 1175. As discussed below, whether the non-literal

elements of a program “are protected depends on

whether, on the particular facts of each case, the

component in question qualifies as an expression of

an idea, or an idea itself.” Id.

In this case, Oracle claims copyright protection

with respect to both: (1) literal elements of its API

packages—the 7,000 lines of declaring source code;

and (2) non-literal elements—the structure,

sequence, and organization of each of the 37 Java

API packages.

The distinction between literal and non-literal

aspects of a computer program is separate from the

distinction between literal and non-literal copying.

See Altai, 982 F.2d at 701–02. “Literal” copying is

verbatim copying of original expression. “Non-literal”

copying is “paraphrased or loosely paraphrased

rather than word for word.” Lotus Dev. Corp. v.

Borland Int’l, 49 F.3d 807, 814 (1st Cir. 1995). Here,

Google concedes that it copied the declaring code

verbatim. Oracle explains that the lines of declaring

code “embody the structure of each [API] package,

just as the chapter titles and topic sentences

represent the structure of a novel.” Appellant Br. 45.

App-22

As Oracle explains, when Google copied the declaring

code in these packages “it also copied the ‘sequence

and organization’ of the packages (i.e., the three-

dimensional structure with all the chutes and

ladders)” employed by Sun/Oracle in the packages.

Appellant Br. 27. Oracle also argues that the

nonliteral elements of the API packages—the

structure, sequence, and organization that led

naturally to the implementing code Google created—

are entitled to protection. Oracle does not assert

“literal” copying of the entire SSO, but, rather, that

Google literally copied the declaring code and then

paraphrased the remainder of the SSO by writing its

own implementing code. It therefore asserts non-

literal copying with respect to the entirety of the

SSO.

At this stage, it is undisputed that the declaring

code and the structure and organization of the Java

API packages are original. The testimony at trial

revealed that designing the Java API packages was a

creative process and that the Sun/Oracle developers

had a vast range of options for the structure and

organization. In its copyrightability decision, the

district court specifically found that the API

packages are both creative and original, and Google

concedes on appeal that the originality requirements

are met. See Copyrightability Decision, 872 F. Supp.

2d at 976 (“The overall name tree, of course, has

creative elements”); Id. at 999 (“Yes, it is

creative. Yes, it is original.”); Appellee Br. 5 (“Google

does not dispute” the district court’s finding that “the

Java API clears the low originality threshold.”). The

court found, however, that neither the declaring code

App-23

nor the SSO was entitled to copyright protection

under the Copyright Act.

Although the parties agree that Oracle’s API

packages meet the originality requirement under

Section 102(a), they disagree as to the proper

interpretation and application of Section 102(b). For

its part, Google suggests that there is a two-step

copyrightability analysis, wherein Section 102(a)

grants copyright protection to original works, while

Section 102(b) takes it away if the work has a

functional component. To the contrary, however,

Congress emphasized that Section 102(b) “in no way

enlarges or contracts the scope of copyright

protection” and that its “purpose is to restate . . . that

the basic dichotomy between expression and idea

remains unchanged.” Feist, 499 U.S. at 356 (quoting

H.R. Rep. No. 1476, 94th Cong., 2d Sess. 54,

reprinted in 1976 U.S.C.C.A.N. 5659, 5670). “Section

102(b) does not extinguish the protection accorded a

particular expression of an idea merely because that

expression is embodied in a method of operation.”

Mitel, Inc. v. Iqtel, Inc., 124 F.3d 1366, 1372 (10th

Cir. 1997). Section 102(a) and 102(b) are to be

considered collectively so that certain expressions are

subject to greater scrutiny. Id. In assessing

copyrightability, the district court is required to

ferret out apparent expressive aspects of a work and

then separate protectable expression from

“unprotectable ideas, facts, processes, and methods of

operation.” See Atari, 975 F.2d at 839.

Of course, as with many things, in defining this

task, the devil is in the details. Circuit courts have

struggled with, and disagree over, the tests to be

App-24

employed when attempting to draw the line between

what is protectable expression and what is not.

Compare Whelan Assocs., Inc. v. Jaslow Dental Lab.,

Inc., 797 F.2d 1222, 1236 (3d Cir. 1986) (everything

not necessary to the purpose or function of a work is

expression), with Lotus, 49 F.3d at 815 (methods of

operation are means by which a user operates

something and any words used to effectuate that

operation are unprotected expression). When

assessing whether the non-literal elements of a

computer program constitute protectable expression,

the Ninth Circuit has endorsed an “abstraction-

filtration-comparison” test formulated by the Second

Circuit and expressly adopted by several other

circuits. Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d

1510, 1525 (9th Cir. 1992) (“In our view, in light of

the essentially utilitarian nature of computer

programs, the Second Circuit’s approach is an

appropriate one.”). This test rejects the notion that

anything that performs a function is necessarily

uncopyrightable. See Mitel, 124 F.3d at 1372

(rejecting the Lotus court’s formulation, and

concluding that, “although an element of a work may

be characterized as a method of operation, that

element may nevertheless contain expression that is

eligible for copyright protection.”). And it also rejects

as flawed the Whelan assumption that, once any

separable idea can be identified in a computer

program everything else must be protectable

expression, on grounds that more than one idea may

be embodied in any particular program. Altai, 982

F.2d at 705–06.

Thus, this test eschews bright line approaches

and requires a more nuanced assessment of the

App-25

particular program at issue in order to determine

what expression is protectable and infringed. As the

Second Circuit explains, this test has three steps. In

the abstraction step, the court “first break[s] down

the allegedly infringed program into its constituent

structural parts.” Id. at 706. In the filtration step, the

court “sift[s] out all non-protectable material,”

including ideas and “expression that is necessarily

incidental to those ideas.” Id. In the final step, the

court compares the remaining creative expression

with the allegedly infringing program.4

In the second step, the court is first to assess

whether the expression is original to the programmer

or author. Atari, 975 F.2d at 839. The court must

then determine whether the particular inclusion of

any level of abstraction is dictated by considerations

of efficiency, required by factors already external to

the program itself, or taken from the public domain—

all of which would render the expression

unprotectable. Id. These conclusions are to be

informed by traditional copyright principles of

originality, merger, and scenes a faire. See Mitel, 124

F.3d at 1372 (“Although this core of expression is

eligible for copyright protection, it is subject to the

rigors of filtration analysis which excludes from

4 Importantly, this full analysis only applies where a copyright

owner alleges infringement of the non-literal aspects of its work.

Where “admitted literal copying of a discrete, easily-

conceptualized portion of a work” is at issue—as with Oracle’s

declaring code—a court “need not perform a complete

abstraction-filtration-comparison analysis” and may focus the

protectability analysis on the filtration stage, with attendant

reference to standard copyright principles. Mitel, 124 F.3d at

1372–73.

App-26

protection expression that is in the public domain,

otherwise unoriginal, or subject to the doctrines of

merger and scenes a faire.”).

In all circuits, it is clear that the first step is part

of the copyrightability analysis and that the third is

an infringement question. It is at the second step of

this analysis where the circuits are in less accord.

Some treat all aspects of this second step as part of

the copyrightability analysis, while others divide

questions of originality from the other inquiries,

treating the former as a question of copyrightability

and the latter as part of the infringement inquiry.

Compare Lexmark, 387 F.3d at 537–38 (finding that

the district court erred in assessing principles of

merger and scenes a faire in the infringement

analysis, rather than as a component of

copyrightability), with Kregos, 937 F.2d at 705

(noting that the Second Circuit has considered the

merger doctrine “in determining whether actionable

infringement has occurred, rather than whether a

copyright is valid”); see also Lexmark, 387 F.3d at 557

(Feikens, J., dissenting-in-part) (noting the circuit

split and concluding that, where a court is assessing

merger of an expression with a method of operation,

“I would find the merger doctrine can operate only as

a defense to infringement in that context, and as

such has no bearing on the question of

copyrightability.”). We need not assess the wisdom of

these respective views because there is no doubt on

which side of this circuit split the Ninth Circuit falls.

In the Ninth Circuit, while questions regarding

originality are considered questions of

copyrightability, concepts of merger and scenes a

App-27

faire are affirmative defenses to claims of

infringement. Ets-Hokin, 225 F.3d at 1082; Satava v.

Lowry, 323 F.3d 805, 810 n.3 (9th Cir. 2003) (“The

Ninth Circuit treats scenes a faire as a defense to

infringement rather than as a barrier to

copyrightability.”). The Ninth Circuit has

acknowledged that “there is some disagreement

among courts as to whether these two doctrines

figure into the issue of copyrightability or are more

properly defenses to infringement.” Ets-Hokin, 225

F.3d at 1082 (citations omitted). It, nonetheless, has

made clear that, in that circuit, these concepts are to

be treated as defenses to infringement. Id. (citing

Kregos, 937 F.2d at 705 (holding that the merger

doctrine relates to infringement, not

copyrightability); Reed-Union Corp. v. Turtle Wax,

Inc., 77 F.3d 909, 914 (7th Cir. 1996) (explaining why

the doctrine of scenes a faire is separate from the

validity of a copyright)).

With these principles in mind, we turn to the

trial court’s analysis and judgment and to Oracle’s

objections thereto. While the trial court mentioned

the abstraction-filtration-comparison test when

describing the development of relevant law, it did not

purport to actually apply that test. Instead, it moved

directly to application of familiar principles of

copyright law when assessing the copyrightability of

the declaring code and interpreted Section 102(b) to

preclude copyrightability for any functional element

“essential for interoperability” “regardless of its

form.” Copyrightability Decision, 872 F. Supp. 2d at

997.

App-28

Oracle asserts that all of the trial court’s

conclusions regarding copyrightability are erroneous.

Oracle argues that its Java API packages are entitled

to protection under the Copyright Act because they

are expressive and could have been written and

organized in any number of ways to achieve the same

functions. Specifically, Oracle argues that the district

court erred when it: (1) concluded that each line of

declaring code is uncopyrightable because the idea

and expression have merged; (2) found the declaring

code uncopyrightable because it employs short

phrases; (3) found all aspects of the SSO devoid of

protection as a “method of operation” under 17 U.S.C.

§ 102(b); and (4) invoked Google’s “interoperability”

concerns in the copyrightability analysis. For the

reasons explained below, we agree with Oracle on

each point.

1. Declaring Source Code

First, Oracle argues that the district court erred

in concluding that each line of declaring source code

is completely unprotected under the merger and

short phrases doctrines. Google responds that Oracle

waived its right to assert copyrightability based on

the 7,000 lines of declaring code by failing “to object

to instructions and a verdict form that effectively

eliminated that theory from the case.” Appellee Br.

67. Even if not waived, moreover, Google argues that,

because there is only one way to write the names and

declarations, the merger doctrine bars copyright

protection.

We find that Oracle did not waive arguments

based on Google’s literal copying of the declaring

code. Prior to trial, both parties informed the court

App-29

that Oracle’s copyright infringement claims included

the declarations of the API elements in the Android

class library source code. See Oracle’s Statement of

Issues Regarding Copyright, Oracle Am., Inc. v.

Google Inc., No. 3:10-cv-3561 (N.D. Cal. Apr. 12,

2012), ECF No. 899-1, at 3 (Oracle accuses the

“declarations of the API elements in the Android

class library source code and object code that

implements the 37 API packages” of copyright

infringement.); see also Google’s Proposed Statement

of Issues Regarding Copyright, Oracle Am., Inc. v.

Google Inc., No. 3:10-cv-3561 (N.D. Cal. Apr. 12,

2012), ECF No. 901, at 2 (Oracle accuses the

“declarations of the API elements in Android class

library source code and object code that implements

the 37 API packages.”).

While Google is correct that the jury instructions

and verdict form focused on the structure and

organization of the packages, we agree with Oracle

that there was no need for the jury to address

copying of the declaring code because Google

conceded that it copied it verbatim. Indeed, the

district court specifically instructed the jury that

“Google agrees that it uses the same names and

declarations” in Android. Final Charge to the Jury at

10.

That the district court addressed the declaring

code in its post-jury verdict copyrightability decision

further confirms that the verbatim copying of

declaring code remained in the case. The court

explained that the “identical lines” that Google

copied into Android “are those lines that specify the

names, parameters and functionality of the methods

App-30

and classes, lines called ‘declarations’ or ‘headers.’”

Copyrightability Decision, 872 F. Supp. 2d at 979.

The court specifically found that the declaring code

was not entitled to copyright protection under the

merger and short phrases doctrines. We address each

in turn.

a. Merger

The merger doctrine functions as an exception to

the idea/expression dichotomy. It provides that, when

there are a limited number of ways to express an

idea, the idea is said to “merge” with its expression,

and the expression becomes unprotected. Altai, 982

F.2d at 707–08. As noted, the Ninth Circuit treats

this concept as an affirmative defense to

infringement. Ets-Hokin, 225 F.3d at 1082.

Accordingly, it appears that the district court’s

merger analysis is irrelevant to the question of

whether Oracle’s API packages are copyrightable in

the first instance. Regardless of when the analysis

occurs, we conclude that merger does not apply on

the record before us.

Under the merger doctrine, a court will not

protect a copyrighted work from infringement if the

idea contained therein can be expressed in only one

way. Satava v. Lowry, 323 F.3d 805, 812 n.5 (9th Cir.

2003). For computer programs, “this means that

when specific [parts of the code], even though

previously copyrighted, are the only and essential

means of accomplishing a given task, their later use

by another will not amount to infringement.” Altai,

982 F.2d at 708 (citation omitted). We have

recognized, however, applying Ninth Circuit law,

that the “unique arrangement of computer program

App-31

expression . . . does not merge with the process so

long as alternate expressions are available.” Atari,

975 F.2d at 840.

In Atari, for example, Nintendo designed a

program—the 10NES—to prevent its video game

system from accepting unauthorized game cartridges.

975 F.2d at 836. Nintendo “chose arbitrary

programming instructions and arranged them in a

unique sequence to create a purely arbitrary data

stream” which “serves as the key to unlock the NES.”

Id. at 840. Because Nintendo produced expert

testimony “showing a multitude of different ways to

generate a data stream which unlocks the NES

console,” we concluded that Nintendo’s specific choice

of code did not merge with the process. Id.

Here, the district court found that, “no matter

how creative or imaginative a Java method

specification may be, the entire world is entitled to

use the same method specification (inputs, outputs,

parameters) so long as the line-by-line

implementations are different.” Copyrightability

Decision, 872 F. Supp. 2d at 998. In its analysis, the

court identified the method declaration as the idea

and found that the implementation is the expression.

Id. (“The method specification is the idea. The

method implementation is the expression. No one

may monopolize the idea.”) (emphases in original).

The court explained that, under the rules of Java, a

programmer must use the identical “declaration or

method header lines” to “declare a method specifying

the same functionality.” Id. at 976. Because the

district court found that there was only one way to

write the declaring code for each of the Java

App-32

packages, it concluded that “the merger doctrine bars

anyone from claiming exclusive copyright ownership”

of it. Id. at 998. Accordingly, the court held there

could be “no copyright violation in using the identical

declarations.” Id.

Google agrees with the district court that the

implementing code is the expression entitled to

protection—not the declaring code. Indeed, at oral

argument, counsel for Google explained that, “it is

not our position that none of Java is copyrightable.

Obviously, Google spent two and a half years . . . to

write from scratch all of the implementing code.”

Oral Argument at 33:16.5 Because it is undisputed

that Google wrote its own implementing code, the

copyrightability of the precise language of that code

is not at issue on appeal. Instead, our focus is on the

declaring code and structure of the API packages.

On appeal, Oracle argues that the district court:

(1) misapplied the merger doctrine; and (2) failed to

focus its analysis on the options available to the

original author. We agree with Oracle on both points.

First, we agree that merger cannot bar copyright

protection for any lines of declaring source code

unless Sun/Oracle had only one way, or a limited

5 It is undisputed that Microsoft and Apple developed mobile

operating systems from scratch, using their own array of

software packages. When asked whether Google could also copy

all of Microsoft or Apple’s declaring code—codes that obviously

differ from those at issue here—counsel for Google responded:

“Yes, but only the structure, sequence, and organization. Only

the command structure—what you need to access the functions.

You’d have to rewrite all the millions of lines of code in Apple or

in Microsoft which is what Google did in Android.” Oral

Argument at 36:00.

App-33

number of ways, to write them. See Satava, 323 F.3d

at 812 n.5 (“Under the merger doctrine, courts will

not protect a copyrighted work from infringement if

the idea underlying the copyrighted work can be

expressed in only one way, lest there be a monopoly

on the underlying idea.”). The evidence showed that

Oracle had “unlimited options as to the selection and

arrangement of the 7000 lines Google copied.”

Appellant Br. 50. Using the district court’s

“java.lang.Math.max” example, Oracle explains that

the developers could have called it any number of

things, including “Math.maximum” or “Arith.larger.”

This was not a situation where Oracle was selecting

among preordained names and phrases to create its

packages.6 As the district court recognized, moreover,

“the Android method and class names could have

been different from the names of their counterparts

in Java and still have worked.” Copyrightability

6 In their brief as amici curiae in support of reversal, Scott

McNealy and Brian Sutphin—both former executives at Sun

who were involved in the development of the Java platform—

provide a detailed example of the creative choices involved in

designing a Java package. Looking at the “java.text” package,

they explain that it “contains 25 classes, 2 interfaces, and

hundreds of methods to handle text, dates, numbers, and

messages in a manner independent of natural human languages

. . . .” Br. of McNealy and Sutphin 14–15. Java’s creators had to

determine whether to include a java.text package in the first

place, how long the package would be, what elements to include,

how to organize that package, and how it would relate to other

packages. Id. at 16. This description of Sun’s creative process is

consistent with the evidence presented at trial. See Appellant

Br. 12–13 (citing testimony that it took years to write some of

the Java packages and that Sun/Oracle developers had to

“wrestle with what functions to include in the package, which to

put in other packages, and which to omit entirely”).

App-34

Decision, 872 F. Supp. 2d at 976. Because

“alternative expressions [we]re available,” there is no

merger. See Atari, 975 F.2d at 840.

We further find that the district court erred in

focusing its merger analysis on the options available

to Google at the time of copying. It is well-established

that copyrightability and the scope of protectable

activity are to be evaluated at the time of creation,

not at the time of infringement. See Apple Computer,

Inc. v. Formula Int’l, Inc., 725 F.2d 521, 524 (9th Cir.

1984) (quoting National Commission on New

Technological Uses of Copyrighted Works, Final

Report at 21 (1979) (“CONTU Report”) (recognizing

that the Copyright Act was designed “to protect all

works of authorship from the moment of their

fixation in any tangible medium of expression”)). The

focus is, therefore, on the options that were available

to Sun/Oracle at the time it created the API

packages. Of course, once Sun/Oracle created

“java.lang.Math.max,” programmers who want to use

that particular package have to call it by that name.

But, as the court acknowledged, nothing prevented

Google from writing its own declaring code, along

with its own implementing code, to achieve the same

result. In such circumstances, the chosen expression

simply does not merge with the idea being

expressed.7

7 The district court did not find merger with respect to the

structure, sequence, and organization of Oracle’s Java API

packages. Nor could it, given the court’s recognition that there

were myriad ways in which the API packages could have been

organized. Indeed, the court found that the SSO is original and

that “nothing in the rules of the Java language . . . required that

App-35

It seems possible that the merger doctrine, when

properly analyzed, would exclude the three packages

identified by the district court as core packages from

the scope of actionable infringing conduct. This would

be so if the Java authors, at the time these packages

were created, had only a limited number of ways to

express the methods and classes therein if they

wanted to write in the Java language. In that

instance, the idea may well be merged with the

expression in these three packages.8 Google did not

present its merger argument in this way below and

does not do so here, however. Indeed, Google does not

try to differentiate among the packages for purposes

of its copyrightability analysis and does not appeal

the infringement verdict as to the packages. For

these reasons, we reject the trial court’s merger

analysis.

Google replicate the same groupings.” Copyrightability Decision,

872 F. Supp. 2d at 999. As discussed below, however, the court

nonetheless found that the SSO is an uncopyrightable “method

of operation.”

8 At oral argument, counsel for Oracle was asked whether we

should view the three core packages “differently vis-à-vis the

concept of a method of operation than the other packages.” See

Oral Argument at 7:43. He responded: “I think not your Honor.

I would view them differently with respect to fair use It’s

not that they are more basic. It’s that there are just several

methods, that is, routines, within just those three packages that

are necessary to ‘speak the Java language.’ Nothing in the other

thirty-four packages is necessary in order to speak in Java, so to

speak.” Id. Counsel conceded, however, that this issue “might go

to merger. It might go to the question whether someone—since

we conceded that it’s okay to use the language—if it’s alright to

use the language that there are certain things that the original

developers had to say in order to use that language, arguably,

although I still think it’s really a fair use analysis.” Id.

App-36

b. Short Phrases

The district court also found that Oracle’s

declaring code consists of uncopyrightable short

phrases. Specifically, the court concluded that, “while

the Android method and class names could have been

different from the names of their counterparts in

Java and still have worked, copyright protection

never extends to names or short phrases as a matter

of law.” Copyrightability Decision, 872 F. Supp. 2d at

976.

The district court is correct that “[w]ords and

short phrases such as names, titles, and slogans” are

not subject to copyright protection. 37 C.F.R.

§ 202.1(a). The court failed to recognize, however,

that the relevant question for copyrightability

purposes is not whether the work at issue contains

short phrases—as literary works often do—but,

rather, whether those phrases are creative. See Soc’y

of Holy Transfiguration Monastery, Inc. v. Gregory,

689 F.3d 29, 52 (1st Cir. 2012) (noting that “not all

short phrases will automatically be deemed

uncopyrightable”); see also 1 Melville B. Nimmer &

David Nimmer, Nimmer on Copyright § 2.01[B]

(2013) (“[E]ven a short phrase may command

copyright protection if it exhibits sufficient

creativity.”). And, by dissecting the individual lines of

declaring code at issue into short phrases, the district

court further failed to recognize that an original

combination of elements can be copyrightable. See

Softel, Inc. v. Dragon Med. & Scientific Commc’ns,

118 F.3d 955, 964 (2d Cir. 1997) (noting that, in

Feist, “the Court made quite clear that a compilation

of nonprotectible elements can enjoy copyright

App-37

protection even though its constituent elements do

not”).

By analogy, the opening of Charles Dickens’ A

Tale of Two Cities is nothing but a string of short

phrases. Yet no one could contend that this portion of

Dickens’ work is unworthy of copyright protection

because it can be broken into those shorter

constituent components. The question is not whether

a short phrase or series of short phrases can be

extracted from the work, but whether the manner in

which they are used or strung together exhibits

creativity.

Although the district court apparently focused on

individual lines of code, Oracle is not seeking

copyright protection for a specific short phrase or

word. Instead, the portion of declaring code at issue

is 7,000 lines, and Google’s own “Java guru” conceded

that there can be “creativity and artistry even in a

single method declaration.” Joint Appendix (“J.A.”)

20,970. Because Oracle “exercised creativity in the

selection and arrangement” of the method

declarations when it created the API packages and

wrote the relevant declaring code, they contain

protectable expression that is entitled to copyright

protection. See Atari, 975 F.2d at 840; see also 17

U.S.C. §§ 101, 103 (recognizing copyright protection

for “compilations” which are defined as work that is

“selected, coordinated, or arranged in such a way

that the resulting work as a whole constitutes an

original work of authorship”). Accordingly, we

conclude that the district court erred in applying the

short phrases doctrine to find the declaring code not

copyrightable.

App-38

c. Scenes a Faire

The scenes a faire doctrine, which is related to

the merger doctrine, operates to bar certain

otherwise creative expression from copyright

protection. Apple Computer, Inc. v. Microsoft Corp.,

35 F.3d 1435, 1444 (9th Cir. 1994). It provides that

“expressive elements of a work of authorship are not

entitled to protection against infringement if they are

standard, stock, or common to a topic, or if they

necessarily follow from a common theme or setting.”

Mitel, 124 F.3d at 1374. Under this doctrine, “when

certain commonplace expressions are indispensable

and naturally associated with the treatment of a

given idea, those expressions are treated like ideas

and therefore [are] not protected by copyright.”

Swirsky v. Carey, 376 F.3d 841, 850 (9th Cir. 2004).

In the computer context, “the scene a faire doctrine

denies protection to program elements that are

dictated by external factors such as ‘the mechanical

specifications of the computer on which a particular

program is intended to run’ or ‘widely accepted

programming practices within the computer

industry.’” Softel, 118 F.3d at 963 (citation omitted).

The trial court rejected Google’s reliance on the

scenes a faire doctrine. It did so in a footnote, finding

that Google had failed to present evidence to support

the claim that either the grouping of methods within

the classes or the code chosen for them “would be so

expected and customary as to be permissible under

the scenes a faire doctrine.” Copyrightability

Decision, 872 F. Supp. 2d at 999 n.9. Specifically, the

trial court found that “it is impossible to say on this

record that all of the classes and their contents are

App-39

typical of such classes and, on this record, this order

rejects Google’s global argument based on scenes a

faire.” Id.

On appeal, Google refers to scenes a faire

concepts briefly, as do some amici, apparently

contending that, because programmers have become

accustomed to and comfortable using the groupings

in the Java API packages, those groupings are so

commonplace as to be indispensable to the expression

of an acceptable programming platform. As such, the

argument goes, they are so associated with the “idea”

of what the packages are accomplishing that they

should be treated as ideas rather than expression.

See Br. of Amici Curiae Rackspace US, Inc., et al. at

19–22.

Google cannot rely on the scenes a faire doctrine

as an alternative ground upon which we might affirm

the copyrightability judgment of the district court.

This is so for several reasons. First, as noted, like

merger, in the Ninth Circuit, the scenes a faire

doctrine is a component of the infringement analysis.

“[S]imilarity of expression, whether literal or non-

literal, which necessarily results from the fact that

the common idea is only capable of expression in

more or less stereotyped form, will preclude a finding

of actionable similarity.” 4 Nimmer on Copyright

§ 13.03[B][3]. Thus, the expression is not excluded

from copyright protection; it is just that certain

copying is forgiven as a necessary incident of any

expression of the underlying idea. See Satava, 323

F.3d at 810 n.3 (“The Ninth Circuit treats scenes a

faire as a defense to infringement rather than as a

barrier to copyrightability.”).

App-40

Second, Google has not objected to the trial

court’s conclusion that Google failed to make a

sufficient factual record to support its contention that

the groupings and code chosen for the 37 Java API

packages were driven by external factors or premised

on features that were either commonplace or

essential to the idea being expressed. Google provides

no record citations indicating that such a showing

was made and does not contend that the trial court

erred when it expressly found it was not. Indeed,

Google does not even make this argument with

respect to the core packages.

Finally, Google’s reliance on the doctrine below

and the amici reference to it here are premised on a

fundamental misunderstanding of the doctrine. Like

merger, the focus of the scenes a faire doctrine is on

the circumstances presented to the creator, not the

copier. See Mitel, 124 F.3d at 1375 (finding error to

the extent the trial court discussed “whether external

factors such as market forces and efficiency

considerations justified Iqtel’s copying of the

command codes”). The court’s analytical focus must

be upon the external factors that dictated Sun’s

selection of classes, methods, and code—not upon

what Google encountered at the time it chose to copy

those groupings and that code. See id. “[T]he scenes a

faire doctrine identifies and excludes from protection

against infringement expression whose creation

‘flowed naturally from considerations external to the

author’s creativity.’” Id. (quoting Nimmer

§ 13.03[F][3], at 13-131 (1997)). It is this showing the

trial court found Google failed to make, and Google

cites to nothing in the record which indicates

otherwise.

App-41

For these reasons, the trial court was correct to

conclude that the scenes a faire doctrine does not

affect the copyrightability of either the declaring code

in, or the SSO of, the Java API packages at issue.

2. The Structure, Sequence,

and Organization of the API Packages

The district court found that the SSO of the Java

API packages is creative and original, but

nevertheless held that it is a “system or method of

operation . . . and, therefore, cannot be copyrighted”

under 17 U.S.C. § 102(b). Copyrightability Decision,

872 F. Supp. 2d at 976–77. In reaching this

conclusion, the district court seems to have relied

upon language contained in a First Circuit decision:

Lotus Development Corp. v. Borland International,

Inc., 49 F.3d 807 (1st Cir. 1995), aff’d without opinion

by equally divided court, 516 U.S. 233 (1996)9

In Lotus, it was undisputed that the defendant

copied the menu command hierarchy and interface

from Lotus 1-2-3, a computer spreadsheet program

“that enables users to perform accounting functions

electronically on a computer.” 49 F.3d at 809. The

menu command hierarchy referred to a series of

commands—such as “Copy,” “Print,” and “Quit”—

which were arranged into more than 50 menus and

submenus. Id. Although the defendant did not copy

any Lotus source code, it copied the menu command

9 The Supreme Court granted certiorari in Lotus, but, shortly

after oral argument, the Court announced that it was equally

divided and that Justice Stevens took no part in the

consideration or decision of the case. The Court therefore left

the First Circuit’s decision undisturbed. See Lotus, 516 U.S. at

233–34.

App-42

hierarchy into its rival program. The question before

the court was “whether a computer menu command

hierarchy is copyrightable subject matter.” Id.

Although it accepted the district court’s finding

that Lotus developers made some expressive choices

in selecting and arranging the command terms, the

First Circuit found that the command hierarchy was

not copyrightable because, among other things, it

was a “method of operation” under Section 102(b). In

reaching this conclusion, the court defined a “method

of operation” as “the means by which a person

operates something, whether it be a car, a food

processor, or a computer.” Id. at 815.10 Because the

Lotus menu command hierarchy provided “the means

by which users control and operate Lotus 1-2-3,” it

was deemed unprotectable. Id. For example, if users

wanted to copy material, they would use the “Copy”

command and the command terms would tell the

computer what to do. According to the Lotus court,

the “fact that Lotus developers could have designed

the Lotus menu command hierarchy differently is

immaterial to the question of whether it is a ‘method

of operation.’” Id. at 816. (noting that “our initial

inquiry is not whether the Lotus menu command

hierarchy incorporates any expression”). The court

further indicated that, “[i]f specific words are

essential to operating something, then they are part

of a ‘method of operation’ and, as such, are

unprotectable.” Id.

10 The Lotus majority cited no authority for this definition of

“method of operation.”

App-43

On appeal, Oracle argues that the district court’s

reliance on Lotus is misplaced because it is

distinguishable on its facts and is inconsistent with

Ninth Circuit law. We agree. First, while the

defendant in Lotus did not copy any of the underlying

code, Google concedes that it copied portions of

Oracle’s declaring source code verbatim. Second, the

Lotus court found that the commands at issue there

(copy, print, etc.) were not creative, but it is

undisputed here that the declaring code and the

structure and organization of the API packages are

both creative and original. Finally, while the court in

Lotus found the commands at issue were “essential to

operating” the system, it is undisputed that—other

than perhaps as to the three core packages—Google

did not need to copy the structure, sequence, and

organization of the Java API packages to write

programs in the Java language.

More importantly, however, the Ninth Circuit

has not adopted the court’s “method of operation”

reasoning in Lotus, and we conclude that it is

inconsistent with binding precedent.11 Specifically,

we find that Lotus is inconsistent with Ninth Circuit

case law recognizing that the structure, sequence,

and organization of a computer program is eligible

for copyright protection where it qualifies as an

expression of an idea, rather than the idea itself. See

11 As Oracle points out, the Ninth Circuit has cited Lotus only

one time, on a procedural issue. See Danjaq LLC v. Sony Corp.,

263 F.3d 942, 954 (9th Cir. 2001) (citing Lotus for the

proposition that delay “has been held permissible, among other

reasons, when it is necessitated by the exhaustion of remedies

through the administrative process . . . when it is used to

evaluate and prepare a complicated claim”).

App-44

Johnson Controls, 886 F.2d at 1175–76. And while

the court in Lotus held “that expression that is part

of a ‘method of operation’ cannot be copyrighted,” 49

F.3d at 818, this court—applying Ninth Circuit law—

reached the exact opposite conclusion, finding that

copyright protects “the expression of [a] process or

method,” Atari, 975 F.2d at 839.

We find, moreover, that the hard and fast rule

set down in Lotus and employed by the district court

here—i.e., that elements which perform a function

can never be copyrightable—is at odds with the

Ninth Circuit’s endorsement of the abstraction-

filtration-comparison analysis discussed earlier. As

the Tenth Circuit concluded in expressly rejecting the

Lotus “method of operation” analysis, in favor of the

Second Circuit’s abstraction-filtration-comparison

test, “although an element of a work may be

characterized as a method of operation, that element

may nevertheless contain expression that is eligible

for copyright protection.” Mitel, 124 F.3d at 1372.

Specifically, the court found that Section 102(b) “does

not extinguish the protection accorded a particular

expression of an idea merely because that expression

is embodied in a method of operation at a higher level

of abstraction.” Id.

Other courts agree that components of a program

that can be characterized as a “method of operation”

may nevertheless be copyrightable. For example, the

Third Circuit rejected a defendant’s argument that

operating system programs are “per se”

uncopyrightable because an operating system is a

“method of operation” for a computer. Apple

Computer, Inc. v. Franklin Computer Corp., 714 F.2d

App-45

1240, 1250–52 (3d Cir. 1983). The court distinguished

between the “method which instructs the computer to

perform its operating functions” and “the instructions

themselves,” and found that the instructions were

copyrightable. Id. at 1250–51. In its analysis, the

court noted: “[t]hat the words of a program are used

ultimately in the implementation of a process should

in no way affect their copyrightability.” Id. at 1252

(quoting CONTU Report at 21). The court focused “on

whether the idea is capable of various modes of

expression” and indicated that, “[i]f other programs

can be written or created which perform the same

function as [i]n Apple’s operating system program,

then that program is an expression of the idea and

hence copyrightable.” Id. at 1253. Notably, no other

circuit has adopted the First Circuit’s “method of

operation” analysis.

Courts have likewise found that classifying a

work as a “system” does not preclude copyright for

the particular expression of that system. See Toro Co.

v. R & R Prods. Co., 787 F.2d 1208, 1212 (8th Cir.

1986) (rejecting the district court’s decision that

“appellant’s parts numbering system is not

copyrightable because it is a ‘system’” and indicating

that Section 102(b) does not preclude protection for

the “particular expression” of that system); see also

Am. Dental Ass’n v. Delta Dental Plans Ass’n, 126

F.3d 977, 980 (7th Cir. 1997) (“A dictionary cannot be

called a ‘system’ just because new novels are written

using words, all of which appear in the dictionary.

Nor is word-processing software a ‘system’ just

because it has a command structure for producing

paragraphs.”).

App-46

Here, the district court recognized that the SSO

“resembles a taxonomy,” but found that “it is

nevertheless a command structure, a system or

method of operation—a long hierarchy of over six

thousand commands to carry out pre-assigned

functions.” Copyrightability Decision, 872 F. Supp. 2d

at 999–1000.12 In other words, the court concluded

that, although the SSO is expressive, it is not

copyrightable because it is also functional. The

problem with the district court’s approach is that

computer programs are by definition functional—

they are all designed to accomplish some task.

Indeed, the statutory definition of “computer

program” acknowledges that they function “to bring

about a certain result.” See 17 U.S.C. § 101 (defining

a “computer program” as “a set of statements or

instructions to be used directly or indirectly in a

computer in order to bring about a certain result”). If

we were to accept the district court’s suggestion that

a computer program is uncopyrightable simply

because it “carr[ies] out pre-assigned functions,” no

computer program is protectable. That result

contradicts Congress’s express intent to provide

copyright protection to computer programs, as well as

binding Ninth Circuit case law finding computer

programs copyrightable, despite their utilitarian or

functional purpose. Though the trial court did add

the caveat that it “does not hold that the structure,

sequence and organization of all computer programs

12 This analogy by the district court is meaningful because

taxonomies, in varying forms, have generally been deemed

copyrightable. See, e.g., Practice Mgmt. Info. Corp. v. Am. Med.

Ass’n, 121 F.3d 516, 517–20 (9th Cir. 1997); Am. Dental, 126

F.3d at 978–81.

App-47

may be stolen,” Copyrightability Decision, 872 F.

Supp. 2d at 1002, it is hard to see how its method of

operation analysis could lead to any other conclusion.

While it does not appear that the Ninth Circuit

has addressed the precise issue, we conclude that a

set of commands to instruct a computer to carry out

desired operations may contain expression that is

eligible for copyright protection. See Mitel, 124 F.3d

at 1372. We agree with Oracle that, under Ninth

Circuit law, an original work—even one that serves a

function—is entitled to copyright protection as long

as the author had multiple ways to express the

underlying idea. Section 102(b) does not, as Google

seems to suggest, automatically deny copyright

protection to elements of a computer program that

are functional. Instead, as noted, Section 102(b)

codifies the idea/expression dichotomy and the

legislative history confirms that, among other things,

Section 102(b) was “intended to make clear that the

expression adopted by the programmer is the

copyrightable element in a computer program.” H.R.

Rep. No. 1476, 94th Cong., 2d Sess. 54, reprinted in

1976 U.S.C.C.A.N. 5659, 5670. Therefore, even if an

element directs a computer to perform operations,

the court must nevertheless determine whether it

contains any separable expression entitled to

protection.

On appeal, Oracle does not—and concedes that it

cannot—claim copyright in the idea of organizing

functions of a computer program or in the “package-

class-method” organizational structure in the

abstract. Instead, Oracle claims copyright protection

only in its particular way of naming and organizing

App-48

each of the 37 Java API packages.13 Oracle

recognizes, for example, that it “cannot copyright the

idea of programs that open an internet connection,”

but “it can copyright the precise strings of code used

to do so, at least so long as ‘other language is

available’ to achieve the same function.” Appellant

Reply Br. 13–14 (citation omitted). Thus, Oracle

concedes that Google and others could employ the

Java language—much like anyone could employ the

English language to write a paragraph without

violating the copyrights of other English language

writers. And, that Google may employ the “package-

class-method” structure much like authors can

employ the same rules of grammar chosen by other

authors without fear of infringement. What Oracle

contends is that, beyond that point, Google, like any

author, is not permitted to employ the precise

phrasing or precise structure chosen by Oracle to

flesh out the substance of its packages—the details

and arrangement of the prose.

As the district court acknowledged, Google could

have structured Android differently and could have

chosen different ways to express and implement the

functionality that it copied.14 Specifically, the court

13 At oral argument, counsel for Oracle explained that it “would

never claim that anyone who uses a package-class-method

manner of classifying violates our copyright. We don’t own every

conceivable way of organizing, we own only our specific

expression—our specific way of naming each of these 362

methods, putting them into 36 classes, and 20 subclasses.” Oral

Argument at 16:44.

14 Amici McNealy and Sutphin explain that “a quick

examination of other programming environments shows that

creators of other development platforms provide the same

App-49

found that “the very same functionality could have

been offered in Android without duplicating the exact

command structure used in Java.” Copyrightability

Decision, 872 F. Supp. 2d at 976. The court further

explained that Google could have offered the same

functions in Android by “rearranging the various

methods under different groupings among the

various classes and packages.” Id. The evidence

showed, moreover, that Google designed many of its

own API packages from scratch, and, thus, could

have designed its own corresponding 37 API

packages if it wanted to do so.

Given the court’s findings that the SSO is

original and creative, and that the declaring code

could have been written and organized in any

number of ways and still have achieved the same

functions, we conclude that Section 102(b) does not

bar the packages from copyright protection just

because they also perform functions.

functions with wholly different creative choices.” Br. of McNealy

and Sutphin 17. For example, in Java, a developer setting the

time zone would call the “setTime-Zone” method within the

“DateFormat” class of the java. text package. Id. Apple’s iOS

platform, on the other hand, “devotes an entire class to set the

time zone in an application—the ‘NSTimeZone’ class” which is

in the “Foundation framework.” Id. at 17–18 (noting that a

“framework is Apple’s terminology for a structure conceptually

similar to Java’s ‘package’”). Microsoft provides similar

functionality with “an entirely different structure, naming

scheme, and selection.” Id. at 18 (“In its Windows Phone

development platform, Microsoft stores its time zone programs

in the ‘TimeZoneInfo’ class in its ‘Systems’ namespace

(Microsoft’s version of a ‘package’ or ‘framework’).”). Again, this

is consistent with the evidence presented at trial.

App-50

3. Google’s Interoperability Arguments

are Irrelevant to Copyrightability

Oracle also argues that the district court erred in

invoking interoperability in its copyrightability

analysis. Specifically, Oracle argues that Google’s

interoperability arguments are only relevant, if at

all, to fair use—not to the question of whether the

API packages are copyrightable. We agree.

In characterizing the SSO of the Java API

packages as a “method of operation,” the district

court explained that “[d]uplication of the command

structure is necessary for interoperability.”

Copyrightability Decision, 872 F. Supp. 2d at 977.

The court found that, “[i]n order for at least some of

[the pre-Android Java] code to run on Android,

Google was required to provide the same java.

package.Class.method() command system using the

same names with the same ‘taxonomy’ and with the

same functional specifications.” Id. at 1000 (emphasis

omitted). And, the court concluded that “Google

replicated what was necessary to achieve a degree of

interoperability—but no more, taking care, as said

before, to provide its own implementations.” Id. In

reaching this conclusion, the court relied primarily

on two Ninth Circuit decisions: Sega Enterprises v.

Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992), and

Sony Computer Entertainment, Inc. v. Connectix,

Corp., 203 F.3d 596 (9th Cir. 2000).

Both Sega and Sony are fair use cases in which

copyrightability was addressed only tangentially. In

Sega, for example, Sega manufactured a video game

console and game cartridges that contained hidden

functional program elements necessary to achieve

App-51

compatibility with the console. Defendant Accolade:

(1) reverse-engineered Sega’s video game programs to

discover the requirements for compatibility; and

(2) created its own games for the Sega console. Sega,

977 F.2d at 1514–15. As part of the reverse-

engineering process, Accolade made intermediate

copies of object code from Sega’s console. Id. Although

the court recognized that the intermediate copying of

computer code may infringe Sega’s copyright, it

concluded that “disassembly of copyrighted object

code is, as a matter of law, a fair use of the

copyrighted work if such disassembly provides the

only means of access to those elements of the code

that are not protected by copyright and the copier

has a legitimate reason for seeking such access.” Id.

at 1518. The court agreed with Accolade that its

copying was necessary to examine the unprotected

functional aspects of the program. Id. at 1520. And,

because Accolade had a legitimate interest in making

its cartridges compatible with Sega’s console, the

court found that Accolade’s intermediate copying was

fair use.

Likewise, in Sony, the Ninth Circuit found that

the defendant’s reverse engineering and intermediate

copying of Sony’s copyrighted software program “was

a fair use for the purpose of gaining access to the

unprotected elements of Sony’s software.” Sony, 203

F.3d at 602. The court explained that Sony’s software

program contained unprotected functional elements

and that the defendant could only access those

elements through reverse engineering. Id. at 603.

The defendant used that information to create a

software program that let consumers play games

designed for Sony’s PlayStation console on their

App-52

computers. Notably, the defendant’s software

program did not contain any of Sony’s copyrighted

material. Id. at 598.

The district court characterized Sony and Sega

as “close analogies” to this case. Copyrightability

Decision, 872 F. Supp. 2d at 1000. According to the

court, both decisions “held that interface procedures

that were necessary to duplicate in order to achieve

interoperability were functional aspects not

copyrightable under Section 102(b).” Id. The district

court’s reliance on Sega and Sony in the

copyrightability context is misplaced, however.

As noted, both cases were focused on fair use, not

copyrightability. In Sega, for example, the only

question was whether Accolade’s intermediate

copying was fair use. The court never addressed the

question of whether Sega’s software code, which had

functional elements, also contained separable

creative expression entitled to protection. Likewise,

although the court in Sony determined that Sony’s

computer program had functional elements, it never

addressed whether it also had expressive elements.

Sega and Sony are also factually distinguishable

because the defendants in those cases made

intermediate copies to understand the functional

aspects of the copyrighted works and then created

new products. See Sony, 203 F.3d at 606–07; Sega,

977 F.2d at 1522–23. This is not a case where Google

reverse-engineered Oracle’s Java packages to gain

access to unprotected functional elements contained

therein. As the former Register of Copyrights of the

United States pointed out in his brief amicus curiae,

“[h]ad Google reverse engineered the programming

App-53

packages to figure out the ideas and functionality of

the original, and then created its own structure and

its own literal code, Oracle would have no remedy

under copyright whatsoever.” Br. for Amicus Curiae

Ralph Oman 29. Instead, Google chose to copy both

the declaring code and the overall SSO of the 37 Java

API packages at issue.

We disagree with Google’s suggestion that Sony

and Sega created an “interoperability exception” to

copyrightability. See Appellee Br. 39 (citing Sony and

Sega for the proposition that “compatibility elements

are not copyrightable under section 102(b)”

(emphasis omitted)). Although both cases recognized

that the software programs at issue there contained

unprotected functional elements, a determination

that some elements are unprotected is not the same

as saying that the entire work loses copyright

protection. To accept Google’s reading would

contradict Ninth Circuit case law recognizing that

both the literal and non-literal components of a

software program are eligible for copyright

protection. See Johnson Controls, 886 F.2d at 1175.

And it would ignore the fact that the Ninth Circuit

endorsed the abstraction-filtration-comparison

inquiry in Sega itself.

As previously discussed, a court must examine

the software program to determine whether it

contains creative expression that can be separated

from the underlying function. See Sega, 977 F.2d at

1524–25. In doing so, the court filters out the

elements of the program that are “ideas” as well as

elements that are “dictated by considerations of

efficiency, so as to be necessarily incidental to that

App-54

idea; required by factors external to the program

itself.” Altai, 982 F.2d at 707.

To determine “whether certain aspects of an

allegedly infringed software are not protected by

copyright law, the focus is on external factors that

influenced the choice of the creator of the infringed

product.” Dun & Bradstreet Software Servs., Inc. v.

Grace Consulting, Inc., 307 F.3d 197, 215 (3d Cir.

2002) (citing Altai, 982 F.2d at 714; Mitel, 124 F.3d

at 1375). The Second Circuit, for example, has noted

that programmers are often constrained in their

design choices by “extrinsic considerations” including

“the mechanical specifications of the computer on

which a particular program is intended to run” and

“compatibility requirements of other programs with

which a program is designed to operate in

conjunction.” Altai, 982 F.2d at 709–10 (citing 3

Melville B. Nimmer & David Nimmer, Nimmer on

Copyright § 13.01 at 13-66-71 (1991)). The Ninth

Circuit has likewise recognized that: (1) computer

programs “contain many logical, structural, and

visual display elements that are dictated by . . .

external factors such as compatibility requirements

and industry demands”; and (2) “[i]n some

circumstances, even the exact set of commands used

by the programmer is deemed functional rather than

creative for purposes of copyright.” Sega, 977 F.2d at

1524 (internal citation omitted).

Because copyrightability is focused on the

choices available to the plaintiff at the time the

computer program was created, the relevant

compatibility inquiry asks whether the plaintiff’s

choices were dictated by a need to ensure that its

App-55

program worked with existing third-party programs.

Dun & Bradstreet, 307 F.3d at 215; see also Atari,

975 F.2d at 840 (“External factors did not dictate the

design of the 10NES program.”). Whether a

defendant later seeks to make its program

interoperable with the plaintiff’s program has no

bearing on whether the software the plaintiff created

had any design limitations dictated by external

factors. See Dun & Bradstreet, 307 F.3d at 215

(finding an expert’s testimony on interoperability

“wholly misplaced” because he “looked at

externalities from the eyes of the plagiarist, not the

eyes of the program’s creator”). Stated differently, the

focus is on the compatibility needs and programming

choices of the party claiming copyright protection—

not the choices the defendant made to achieve

compatibility with the plaintiff’s program. Consistent

with this approach, courts have recognized that, once

the plaintiff creates a copyrightable work, a

defendant’s desire “to achieve total compatibility . . .

is a commercial and competitive objective which does

not enter into the . . . issue of whether particular

ideas and expressions have merged.” Apple

Computer, 714 F.2d at 1253.

Given this precedent, we conclude that the

district court erred in focusing its interoperability

analysis on Google’s desires for its Android software.

See Copyrightability Decision, 872 F. Supp. 2d at

1000 (“Google replicated what was necessary to

achieve a degree of interoperability” with Java.).

Whether Google’s software is “interoperable” in some

sense with any aspect of the Java platform (although

as Google concedes, certainly not with the JVM) has

no bearing on the threshold question of whether

App-56

Oracle’s software is copyrightable. It is the

interoperability and other needs of Oracle—not those

of Google—that apply in the copyrightability context,

and there is no evidence that when Oracle created

the Java API packages at issue it did so to meet

compatibility requirements of other pre-existing

programs.

Google maintains on appeal that its use of the

“Java class and method names and declarations was

‘the only and essential means’ of achieving a degree

of interoperability with existing programs written in

the [Java language].” Appellee Br. 49. Indeed, given

the record evidence that Google designed Android so

that it would not be compatible with the Java

platform, or the JVM specifically, we find Google’s

interoperability argument confusing. While Google

repeatedly cites to the district court’s finding that

Google had to copy the packages so that an app

written in Java could run on Android, it cites to no

evidence in the record that any such app exists and

points to no Java apps that either pre-dated or post-

dated Android that could run on the Android

platform.15 The compatibility Google sought to foster

15 During oral argument, Google’s counsel stated that “a

program written in the Java language can run on Android if it’s

only using packages within the 37. So if I’m a developer and I

have written a program, I’ve written it in Java, I can stick an

Android header on it and it will run in Android because it is

using the identical names of the classes, methods, and

packages.” Oral Argument at 31:31. Counsel did not identify

any programs that use only the 37 API packages at issue,

however, and did not attest that any such program would be

useful. Nor did Google cite to any record evidence to support

this claim.

App-57

was not with Oracle’s Java platform or with the JVM

central to that platform. Instead, Google wanted to

capitalize on the fact that software developers were

already trained and experienced in using the Java

API packages at issue. The district court agreed,

finding that, as to the 37 Java API packages, “Google

believed Java application programmers would want

to find the same 37 sets of functionalities in the new

Android system callable by the same names as used

in Java.” Copyrightability Decision, 872 F. Supp. 2d

at 978. Google’s interest was in accelerating its

development process by “leverag[ing] Java for its

existing base of developers.” J.A. 2033, 2092.

Although this competitive objective might be relevant

to the fair use inquiry, we conclude that it is

irrelevant to the copyrightability of Oracle’s declaring

code and organization of the API packages.

Finally, to the extent Google suggests that it was

entitled to copy the Java API packages because they

had become the effective industry standard, we are

unpersuaded. Google cites no authority for its

suggestion that copyrighted works lose protection

when they become popular, and we have found

none.16 In fact, the Ninth Circuit has rejected the

16 Google argues that, in the same way a formerly distinctive

trademark can become generic over time, a program element

can lose copyright protection when it becomes an industry

standard. But “it is to be expected that phrases and other

fragments of expression in a highly successful copyrighted work

will become part of the language. That does not mean they lose

all protection in the manner of a trade name that has become

generic.” Warner Bros., Inc. v. Am. Broadcasting Cos., 720 F.2d

231, 242 (2d Cir. 1983) (“No matter how well known a

copyrighted phrase becomes, its author is entitled to guard

App-58

argument that a work that later becomes the

industry standard is uncopyrightable. See Practice

Mgmt. Info. Corp. v. Am. Med. Ass’n, 121 F.3d 516,

520 n.8 (9th Cir. 1997) (noting that the district court

found plaintiff’s medical coding system entitled to

copyright protection, and that, although the system

had become the industry standard, plaintiff’s

copyright did not prevent competitors “from

developing comparative or better coding systems and

lobbying the federal government and private actors

to adopt them. It simply prevents wholesale copying

of an existing system.”). Google was free to develop

its own API packages and to “lobby” programmers to

adopt them. Instead, it chose to copy Oracle’s

declaring code and the SSO to capitalize on the

preexisting community of programmers who were

accustomed to using the Java API packages. That

desire has nothing to do with copyrightability. For

these reasons, we find that Google’s industry

standard argument has no bearing on the

copyrightability of Oracle’s work.

B. Fair Use

As noted, the jury hung on Google’s fair use

defense, and the district court declined to order a

new trial given its conclusion that the code and

structure Google copied were not entitled to copyright

against its appropriation to promote the sale of commercial

products.”). Notably, even when a patented method or system

becomes an acknowledged industry standard with acquiescence

of the patent owner, any permissible use generally requires

payment of a reasonable royalty, which Google refused to do

here. See generally In re Innovatio IP Ventures, LLC, No. 11-C-

9308, 2013 U.S. Dist. LEXIS 144061 (N.D. Ill. Sept. 27, 2013).

App-59

protection. On appeal, Oracle argues that: (1) a

remand to decide fair use “is pointless”; and (2) this

court should find, as a matter of law, that “Google’s

commercial use of Oracle’s work in a market where

Oracle already competed was not fair use.” Appellant

Br. 68.

Fair use is an affirmative defense to copyright

infringement and is codified in Section 107 of the

Copyright Act. Golan, 132 S. Ct. at 890 (“[T]he fair

use defense, is codified at 17 U.S.C. §107.”). Section

107 permits use of copyrighted work if it is “for

purposes such as criticism, comment, news reporting,

teaching (including multiple copies for classroom

use), scholarship, or research.” 17 U.S.C. § 107. The

fair use doctrine has been referred to as “‘the most

troublesome in the whole law of copyright.’” Monge v.

Maya Magazines, Inc., 688 F.3d 1164, 1170 (9th Cir.

2012) (quoting Dellar v. Samuel Goldwyn, Inc., 104

F.2d 661, 662 (2d Cir. 1939) (per curiam)). It both

permits and requires “courts to avoid rigid

application of the copyright statute when, on

occasion, it would stifle the very creativity which that

law is designed to foster.” Campbell v. Acuff-Rose

Music, Inc., 510 U.S. 569, 577 (1994) (quoting

Stewart v. Abend, 495 U.S. 207, 236 (1990)).

“Section 107 requires a case-by-case

determination whether a particular use is fair, and

the statute notes four nonexclusive factors to be

considered.” Harper & Row Publishers, Inc. v. Nation

Enters., 471 U.S. 539, 549 (1985). Those factors are:

(1) “the purpose and character of the use, including

whether such use is of a commercial nature or is for

nonprofit educational purposes;” (2) “the nature of

App-60

the copyrighted work;” (3) “the amount and

substantiality of the portion used in relation to the

copyrighted work as a whole;” and (4) “the effect of

the use upon the potential market for or value of the

copyrighted work.” 17 U.S.C. § 107. The Supreme

Court has explained that all of the statutory factors

“are to be explored, and the results weighed together,

in light of the purpose[] of copyright,” which is “[t]o

promote the Progress of Science and useful Arts.”

Campbell, 510 U.S. at 578, 575 (internal citations

omitted).

“Fair use is a mixed question of law and fact.”

Harper & Row, 471 U.S. at 560. Thus, while

subsidiary and controverted findings of fact must be

reviewed for clear error under Rule 52 of the Federal

Rules of Civil Procedure, the Ninth Circuit reviews

the ultimate application of those facts de novo. See

Seltzer v. Green Day, Inc., 725 F.3d 1170, 1175 (9th

Cir. 2013) (citing SOFA Entm’t, Inc. v. Dodger Prods.,

Inc., 709 F.3d 1273, 1277 (9th Cir. 2013)). Where

there are no material facts at issue and “the parties

dispute only the ultimate conclusions to be drawn

from those facts, we may draw those conclusions

without usurping the function of the jury.” Id. (citing

Fisher v. Dees, 794 F.2d 432, 436 (9th Cir. 1986)).

Indeed, the Supreme Court has specifically

recognized that, “[w]here the district court has found

facts sufficient to evaluate each of the statutory

factors, an appellate court ‘need not remand for

further factfinding . . . [but] may conclude as a

matter of law that [the challenged use] [does] not

qualify as a fair use of the copyrighted work.’” Harper

& Row, 471 U.S. at 560 (citation omitted).

App-61

Of course, the corollary to this point is true as

well—where there are material facts in dispute and

those facts have not yet been resolved by the trier of

fact, appellate courts may not make findings of fact

in the first instance. See Shawmut Bank, N.A. v.

Kress Assocs., 33 F.3d 1477, 1504 (9th Cir. 1994)

(“[W]e must avoid finding facts in the first

instance.”); see also Golden Bridge Tech., Inc. v.

Nokia, Inc., 527 F.3d 1318, 1323 (Fed. Cir. 2008)

(“Appellate courts review district court judgments;

we do not find facts.”). Here, it is undisputed that

neither the jury nor the district court made findings

of fact to which we can refer in assessing the question

of whether Google’s use of the API packages at issue

was a “fair use” within the meaning of Section 107.

Oracle urges resolution of the fair use question by

arguing that the trial court should have decided the

question as a matter of law based on the undisputed

facts developed at trial, and that we can do so as

well. Google, on the other hand, argues that many

critical facts regarding fair use are in dispute. It

asserts that the fact that the jury could not reach a

resolution on the fair use defense indicates that at

least some presumably reasonable jurors found its

use to be fair. And, Google asserts that, even if it is

true that the district court erred in discussing

concepts of “interoperability” when considering

copyrightability, those concepts are still relevant to

its fair use defense. We turn first to a more detailed

examination of fair use.

The first factor in the fair use inquiry involves

“the purpose and character of the use, including

whether such use is of a commercial nature or is for

nonprofit educational purposes.” 17 U.S.C. § 107(1).

App-62

This factor involves two sub-issues: (1) “whether and

to what extent the new work is transformative,”

Campbell, 510 U.S. at 579 (citation and internal

quotation marks omitted); and (2) whether the use

serves a commercial purpose.

A use is “transformative” if it “adds something

new, with a further purpose or different character,

altering the first with new expression, meaning or

message.” Id. The critical question is “whether the

new work merely supersede[s] the objects of the

original creation . . . or instead adds something new.”

Id. (citations and internal quotation marks omitted).

This inquiry “may be guided by the examples given in

the preamble to § 107, looking to whether the use is

for criticism, or comment, or news reporting, and the

like.” Id. at 578–79. “The Supreme Court has

recognized that parodic works, like other works that

comment and criticize, are by their nature often

sufficiently transformative to fit clearly under the

fair use exception.” Mattel Inc. v. Walking Mountain

Prods., 353 F.3d 792, 800 (9th Cir. 2003) (citing

Campbell, 510 U.S. at 579).

Courts have described new works as

“transformative” when “the works use copy-righted

material for purposes distinct from the purpose of the

original material.” Elvis Presley Enters., Inc. v.

Passport Video, 349 F.3d 622, 629 (9th Cir. 2003)

(“Here, Passport’s use of many of the television clips

is transformative because they are cited as historical

reference points in the life of a remarkable

entertainer.”), overruled on other grounds by Flexible

Lifeline Sys., Inc. v. Precision Lift, Inc., 654 F.3d 989,

995 (9th Cir. 2011) (per curiam); see also Bouchat v.

App-63

Baltimore Ravens Ltd. P’ship, 619 F.3d 301, 309–10

(4th Cir. 2010) (quoting A.V. ex rel. Vanderhyge v.

iParadigms, LLC, 562 F.3d 630, 638 (4th Cir. 2009)

(“[A] transformative use is one that ‘employ[s] the

quoted matter in a different manner or for a different

purpose from the original.’”)). “A use is considered

transformative only where a defendant changes a

plaintiff’s copyrighted work or uses the plaintiff’s

copyrighted work in a different context such that the

plaintiff’s work is transformed into a new creation.”

Perfect 10, Inc. v. Amazon.com, Inc., 508 F.3d 1146,

1165 (9th Cir. 2007) (quoting Wall Data Inc. v. L.A.

County Sheriff’s Dep’t, 447 F.3d 769, 778 (9th Cir.

2006), and finding that Google’s use of thumbnail

images in its search engine was “highly

transformative”).

A work is not transformative where the user

“makes no alteration to the expressive content or

message of the original work.” Seltzer, 725 F.3d at

1177; see also Wall Data, 447 F.3d at 778 (“The

Sheriff’s Department created exact copies of

RUMBA’s software. It then put those copies to the

identical purpose as the original software. Such a use

cannot be considered transformative.”); Monge, 688

F.3d at 1176 (finding that a magazine’s publication of

photographs of a secret celebrity wedding “sprinkled

with written commentary” was “at best minimally

transformative” where the magazine “did not

transform the photos into a new work . . . or

incorporate the photos as part of a broader work”);

Elvis Presley Enters., 349 F.3d at 629 (finding that

use of copyrighted clips of Elvis’s television

appearances was not transformative where “some of

the clips [we]re played without much interruption, if

App-64

any . . . [and] instead serve[d] the same intrinsic

entertainment value that is protected by Plaintiffs’

copyrights.”). Where the use “is for the same intrinsic

purpose as [the copyright holder’s] . . . such use

seriously weakens a claimed fair use.” Worldwide

Church of God v. Phila. Church of God, Inc., 227 F.3d

1110, 1117 (9th Cir. 2000) (quoting Weissmann v.

Freeman, 868 F.2d 1313, 1324 (2d Cir. 1989)).

Analysis of the first factor also requires inquiry

into the commercial nature of the use. Use of the

copyrighted work that is commercial “tends to weigh

against a finding of fair use.” Harper & Row, 471

U.S. at 562 (“The crux of the profit/nonprofit

distinction is not whether the sole motive of the use

is monetary gain but whether the user stands to

profit from exploitation of the copyrighted material

without paying the customary price.”). “[T]he more

transformative the new work, the less will be the

significance of other factors, like commercialism, that

may weigh against a finding of fair use.” Campbell,

510 U.S. at 579.

The second factor—the nature of the copyrighted

work—“calls for recognition that some works are

closer to the core of intended copyright protection

than others, with the consequence that fair use is

more difficult to establish when the former works are

copied.” Id. at 586. This factor “turns on whether the

work is informational or creative.” Worldwide Church

of God, 227 F.3d at 1118; see also Harper & Row, 471

U.S. at 563 (“The law generally recognizes a greater

need to disseminate factual works than works of

fiction or fantasy.”). Creative expression “falls within

the core of the copyright’s protective purposes.”

App-65

Campbell, 510 U.S. at 586. Because computer

programs have both functional and expressive

components, however, where the functional

components are themselves unprotected (because,

e.g., they are dictated by considerations of efficiency

or other external factors), those elements should be

afforded “a lower degree of protection than more

traditional literary works.” Sega, 977 F.2d at 1526.

Thus, where the nature of the work is such that

purely functional elements exist in the work and it is

necessary to copy the expressive elements in order to

perform those functions, consideration of this second

factor arguably supports a finding that the use is

fair.

The third factor asks the court to examine “the

amount and substantiality of the portion used in

relation to the copyrighted work as a whole.” 17

U.S.C. § 107(3). Analysis of this factor is viewed in

the context of the copyrighted work, not the

infringing work. Indeed, the statutory language

makes clear that “a taking may not be excused

merely because it is insubstantial with respect to the

infringing work.” Harper & Row, 471 U.S. at 565. “As

Judge Learned Hand cogently remarked, ‘no

plagiarist can excuse the wrong by showing how

much of his work he did not pirate.’” Id. (quoting

Sheldon v. Metro-Goldwyn Pictures Corp., 81 F.2d 49,

56 (2d Cir. 1936)). In contrast, “the fact that a

substantial portion of the infringing work was copied

verbatim is evidence of the qualitative value of the

copied material, both to the originator and to the

plagiarist who seeks to profit from marketing

someone else’s copyrighted expression.” Id. The

Ninth Circuit has recognized that, while “wholesale

App-66

copying does not preclude fair use per se, copying an

entire work militates against a finding of fair use.”

Worldwide Church of God, 227 F.3d at 1118 (internal

citation and quotation omitted). “If the secondary

user only copies as much as is necessary for his or

her intended use, then this factor will not weigh

against him or her.” Kelly v. Arriba Soft Corp., 336

F.3d 811, 820–21 (9th Cir. 2003). Under this factor,

“attention turns to the persuasiveness of a parodist’s

justification for the particular copying done, and the

enquiry will harken back to the first of the statutory

factors . . . [because] the extent of permissible

copying varies with the purpose and character of the

use.” Campbell, 510 U.S. at 586–87.

The fourth and final factor focuses on “the effect

of the use upon the potential market for or value of

the copyrighted work.” Harper & Row, 471 U.S. at

566. This factor reflects the idea that fair use “is

limited to copying by others which does not

materially impair the marketability of the work

which is copied.” Id. at 566–67. The Supreme Court

has said that this factor is “undoubtedly the single

most important element of fair use.” Id. at 566. It

requires that courts “consider not only the extent of

market harm caused by the particular actions of the

alleged infringer, but also whether unrestricted and

widespread conduct of the sort engaged in by the

defendant . . . would result in a substantially adverse

impact on the potential market for the original.”

Campbell, 510 U.S. at 590 (citation and quotation

marks omitted). “Market harm is a matter of degree,

and the importance of this factor will vary, not only

with the amount of harm, but also with the relative

App-67

strength of the showing on the other factors.” Id. at

590 n.21.

Oracle asserts that all of these factors support its

position that Google’s use was not “fair use”—Google

knowingly and illicitly copied a creative work to

further its own commercial purposes, did so

verbatim, and did so to the detriment of Oracle’s

market position. These undisputable facts, according

to Oracle, should end the fair use inquiry. Oracle’s

position is not without force. On many of these

points, Google does not debate Oracle’s

characterization of its conduct, nor could it on the

record evidence.

Google contends, however, that, although it

admittedly copied portions of the API packages and

did so for what were purely commercial purposes, a

reasonable juror still could find that: (1) Google’s use

was transformative; (2) the Java API packages are

entitled only to weak protection; (3) Google’s use was

necessary to work within a language that had become

an industry standard; and (4) the market impact on

Oracle was not substantial.

On balance, we find that due respect for the limit

of our appellate function requires that we remand the

fair use question for a new trial. First, although it is

undisputed that Google’s use of the API packages is

commercial, the parties disagree on whether its use

is “transformative.” Google argues that it is, because

it wrote its own implementing code, created its own

virtual machine, and incorporated the packages into

a smartphone platform. For its part, Oracle

maintains that Google’s use is not transformative

because: (1) “[t]he same code in Android . . . enables

App-68

programmers to invoke the same pre-programmed

functions in exactly the same way;” and (2) Google’s

use of the declaring code and packages does not serve

a different function from Java. Appellant Reply Br.

47. While Google overstates what activities can be

deemed transformative under a correct application of

the law, we cannot say that there are no material

facts in dispute on the question of whether Google’s

use is “transformative,” even under a correct reading

of the law. As such, we are unable to resolve this

issue on appeal.

Next, while we have concluded that it was error

for the trial court to focus unduly on the functional

aspects of the packages, and on Google’s competitive

desire to achieve commercial “interoperability” when

deciding whether Oracle’s API packages are entitled

to copyright protection, we expressly noted that these

factors may be relevant to a fair use analysis. While

the trial court erred in concluding that these factors

were sufficient to overcome Oracle’s threshold claim

of copyrightability, reasonable jurors might find that

they are relevant to Google’s fair use defense under

the second and third factors of the inquiry. See Sega,

977 F.2d at 1524–25 (discussing the Second Circuit’s

approach to “break[ing] down a computer program

into its component subroutines and sub-subroutines

and then identif[ying] the idea or core functional

element of each” in the context of the second fair use

factor: the nature of the copyrighted work). We find

this particularly true with respect to those core

packages which it seems may be necessary for

anyone to copy if they are to write programs in the

Java language. And, it may be that others of the

packages were similarly essential components of any

App-69

Java language-based program. So far, that type of

filtration analysis has not occurred.

Finally, as to market impact, the district court

found that “Sun and Oracle never successfully

developed its own smartphone platform using Java

technology.” Copyrightability Decision, 872 F. Supp.

2d at 978. But Oracle argues that, when Google

copied the API packages, Oracle was licensing in the

mobile and smartphone markets, and that Android’s

release substantially harmed those commercial

opportunities as well as the potential market for a

Java smartphone device. Because there are material

facts in dispute on this factor as well, remand is

necessary.

Ultimately, we conclude that this is not a case in

which the record contains sufficient factual findings

upon which we could base a de novo assessment of

Google’s affirmative defense of fair use. Accordingly,

we remand this question to the district court for

further proceedings. On remand, the district court

should revisit and revise its jury instructions on fair

use consistent with this opinion so as to provide the

jury with a clear and appropriate picture of the fair

use defense.17

17 Google argues that, if we allow it to retry its fair use defense

on remand, it is entitled to a retrial on infringement as well. We

disagree. The question of whether Google’s copying constituted

infringement of a copyrighted work is “distinct and separable”

from the question of whether Google can establish a fair use

defense to its copying. See Gasoline Prods. Co. v. Champlin

Refining Co., 283 U.S. 494, 500 (1931) (“Where the practice

permits a partial new trial, it may not properly be resorted to

unless it clearly appears that the issue to be retried is so

App-70

II. GOOGLE’S CROSS-APPEAL

Google cross-appeals from the portion of the

district court’s final judgment entered in favor of

Oracle on its claim for copyright infringement as to

the nine lines of rangeCheck code and the eight

decompiled files. Final Judgment, Oracle Am., Inc. v.

Google Inc., No. 3:10-cv-3561 (N.D. Cal. June 20,

2012), ECF No. 1211. Specifically, Google appeals

from the district court’s decisions: (1) granting

Oracle’s motion for JMOL of infringement as to the

eight decompiled Java files that Google copied into

Android; and (2) denying Google’s motion for JMOL

with respect to rangeCheck.

When reviewing a district court’s grant or denial

of a motion for JMOL, we apply the procedural law of

the relevant regional circuit, here the Ninth Circuit.

Trading Techs. Int’l, Inc. v. eSpeed, Inc., 595 F.3d

1340, 1357 (Fed. Cir. 2010). The Ninth Circuit

reviews a district court’s JMOL decision de novo,

applying the same standard as the district court.

Mangum v. Action Collection Serv., Inc., 575 F.3d

distinct and separable from the others that a trial of it alone

may be had without injustice.”). Indeed, we have emphasized

more than once in this opinion the extent to which the questions

are separable, and the confusion and error caused when they

are blurred. The issues are not “interwoven” and it would not

create “confusion and uncertainty” to reinstate the infringement

verdict and submit fair use to a different jury. Id. We note,

moreover, that, because Google only mentions this point in

passing, with no development of an argument in support of it,

under our case law, it has not been properly raised. See

SmithKline Beecham Corp. v. Apotex Corp., 439 F.3d 1312, 1320

(Fed. Cir. 2006) (when a party provides no developed argument

on a point, we treat that argument as waived) (collecting cases).

App-71

935, 938 (9th Cir. 2009). To grant judgment as a

matter of law, the court must find that “the evidence

presented at trial permits only one reasonable

conclusion” and that “no reasonable juror could find

in the non-moving party’s favor.” Id. at 938–39

(citation and internal quotation marks omitted).

Oracle explains that the eight decompiled files at

issue “contain security functions governing access to

network files” while rangeCheck “facilitates an

important sorting function, frequently called upon

during the operation of Java and Android.” Oracle

Response to Cross-Appeal 60–61. At trial, Google

conceded that it copied the eight decompiled Java

code files and the nine lines of code referred to as

rangeCheck into Android. Its only defense was that

the copying was de minimis. Accordingly, the district

court instructed the jury that, “[w]ith respect to the

infringement issues concerning the rangeCheck and

other similar files, Google agrees that the accused

lines of code and comments came from the

copyrighted materials but contends that the amounts

involved were so negligible as to be de minimis and

thus should be excluded.” Final Charge to the Jury

(Phase One), Oracle Am., Inc. v. Google, Inc., No.

3:10-cv-3561 (N.D. Cal. Apr. 30, 2012), ECF No.

1018, at 14.

Although the jury found that Google infringed

Oracle’s copyright in the nine lines of code

comprising rangeCheck, it returned a

noninfringement verdict as to eight decompiled

security files. But because the trial testimony was

that Google’s use of the decompiled files was

significant—and there was no testimony to the

App-72

contrary—the district court concluded that “[n]o

reasonable jury could find that this copying was de

minimis.” Order Granting JMOL on Decompiled

Files, 2012 U.S. Dist. LEXIS 66417, at *6. As such,

the court granted Oracle’s motion for JMOL of

infringement as to the decompiled security files.

On appeal, Google maintains that its copying of

rangeCheck and the decompiled security files was de

minimis and thus did not infringe any of Oracle’s

copyrights. According to Google, the district court

should have denied Oracle’s motion for JMOL

“because substantial evidence supported the jury’s

verdict that Google’s use of eight decompiled test files

was de minimis.” Cross-Appellant Br. 76. Google

further argues that the court should have granted its

motion for JMOL as to rangeCheck because the “trial

evidence revealed that the nine lines of rangeCheck

code were both quantitatively and qualitatively

insignificant in relation to the [Java] platform.” Id. at

78.

In response, Oracle argues that the Ninth

Circuit does not recognize a de minimis defense to

copyright infringement and that, even if it does, we

should affirm the judgments of infringement on

grounds that Google’s copying was significant.

Because we agree with Oracle on its second point, we

need not address the first, except to note that there is

some conflicting Ninth Circuit precedent on the

question of whether there is a free-standing de

minimis defense to copyright infringement or

whether the substantiality of the alleged copying is

best addressed as part of a fair use defense. Compare

Norse v. Henry Holt & Co., 991 F.2d 563, 566 (9th

App-73

Cir. 1993) (indicating that “even a small taking may

sometimes be actionable” and the “question of

whether a copying is substantial enough to be

actionable may be best resolved through the fair use

doctrine”), with Newton v. Diamond, 388 F.3d 1189,

1192–93 (9th Cir. 2003) (“For an unauthorized use of

a copyrighted work to be actionable, the use must be

significant enough to constitute infringement. This

means that even where the fact of copying is

conceded, no legal consequences will follow from that

fact unless the copying is substantial.”) (internal

citation omitted)).18

Even assuming that the Ninth Circuit recognizes

a stand-alone de minimis defense to copyright

infringement, however, we conclude that: (1) the jury

reasonably found that Google’s copying of the

rangeCheck files was more than de minimis; and

(2) the district court correctly concluded that the

defense failed as a matter of law with respect to the

decompiled security files.

First, the unrebutted testimony at trial revealed

that rangeCheck and the decompiled security files

were significant to both Oracle and Google. Oracle’s

expert, Dr. John Mitchell, testified that Android

18 At least one recent district court decision has recognized

uncertainty in Ninth Circuit law on this point. See Brocade

Commc’ns Sys. v. A10 Networks, Inc., No. 10-cv-3428, 2013 U.S.

Dist. LEXIS 8113, at *33 (N.D. Cal. Jan. 10, 2013) (“The Ninth

Circuit has been unclear about whether the de minimis use

doctrine serves as an affirmative defense under the Copyright

Act’s fair use exceptions or whether the doctrine merely

highlights plaintiffs’ obligation to show that ‘the use must be

significant enough to constitute infringement.’”) (citing Newton,

388 F.2d at 1193; Norse, 991 F.2d at 566).

App-74

devices call the rangeCheck function 2,600 times just

in powering on the device. Although Google argues

that the eight decompiled files were insignificant

because they were used only to test the Android

platform, Dr. Mitchell testified that “using the copied

files even as test files would have been significant

use” and the district court specifically found that

“[t]here was no testimony to the contrary.” Order

Granting JMOL on Decompiled Files, 2012 U.S. Dist.

LEXIS 66417, at *6. Given this testimony, a

reasonable jury could not have found Google’s

copying de minimis.

Google emphasizes that the nine lines of

rangeCheck code “represented an infinitesimal

percentage of the 2.8 million lines of code in the 166

Java packages—let alone the millions of lines of code

in the entire [Java] platform.” Google Cross-Appeal

Br. 78–79. To the extent Google is arguing that a

certain minimum number of lines of code must be

copied before a court can find infringement, that

argument is without merit. See Baxter v. MCA, Inc.,

812 F.2d 421, 425 (9th Cir. 1987) (“[N]o bright line

rule exists as to what quantum of similarity is

permitted.”). And, given the trial testimony that both

rangeCheck and the decompiled security files are

qualitatively significant and Google copied them in

their entirety, Google cannot show that the district

court erred in denying its motion for JMOL.

We have considered Google’s remaining

arguments and find them unpersuasive. Accordingly,

we affirm both of the JMOL decisions at issue in

Google’s cross-appeal.

App-75

III. GOOGLE’S POLICY-BASED ARGUMENTS

Many of Google’s arguments, and those of some

amici, appear premised on the belief that copyright is

not the correct legal ground upon which to protect

intellectual property rights to software programs;

they opine that patent protection for such programs,

with its insistence on non-obviousness, and shorter

terms of protection, might be more applicable, and

sufficient. Indeed, the district court’s method of

operation analysis seemed to say as much.

Copyrightability Decision, 872 F. Supp. 2d at 984

(stating that this case raises the question of “whether

the copyright holder is more appropriately asserting

an exclusive right to a functional system, process, or

method of operation that belongs in the realm of

patents, not copyrights”). Google argues that “[a]fter

Sega, developers could no longer hope to protect

[software] interfaces by copyright . . . Sega signaled

that the only reliable means for protecting the

functional requirements for achieving

interoperability was by patenting them.” Appellee Br.

40 (quoting Pamela Samuelson, Are Patents on

Interfaces Impeding Interoperability? 93 Minn. L.

Rev. 1943, 1959 (2009)). And, Google relies heavily on

articles written by Professor Pamela Samuelson, who

has argued that “it would be best for a commission of

computer program experts to draft a new form of

intellectual property law for machine-readable

programs.” Pamela Samuelson, CONTU Revisited:

The Case Against Copyright Protection for Computer

Programs in Machine-Readable Form, 1984 Duke

L.J. 663, 764 (1984). Professor Samuelson has more

recently argued that “Altai and Sega contributed to

the eventual shift away from claims of copyright in

App-76

program interfaces and toward reliance on patent

protection. Patent protection also became more

plausible and attractive as the courts became more

receptive to software patents.” Samuelson, 93 Minn.

L. Rev. at 1959.

Although Google, and the authority on which it

relies, seem to suggest that software is or should be

entitled to protection only under patent law—not

copyright law—several commentators have recently

argued the exact opposite. See Technology Quarterly,

Stalking Trolls, ECONOMIST, Mar. 8, 2014, http://

www.economist.com/news/technology-quarterly/2159

8321-intellectual-property-after-being-blamed-stymyi

ng-innovation-america-vague (“[M]any innovators

have argued that the electronics and software

industries would flourish if companies trying to bring

new technology (software innovations included) to

market did not have to worry about being sued for

infringing thousands of absurd patents at every turn.

A perfectly adequate means of protecting and

rewarding software developers for their ingenuity

has existed for over 300 years. It is called

copyright.”); Timothy B. Lee, Will the Supreme Court

save us from software patents?, WASH. POST, Feb.

26, 2014, 1:13 PM, http://www.washingtonpost.com/

blogs/the-switch/wp/2014/02/26/will-the-supreme-cou

rt-save-us-from-softwarepatents/ (“If you write a book

or a song, you can get copyright protection for it. If

you invent a new pill or a better mousetrap, you can

get a patent on it. But for the last two decades,

software has had the distinction of being potentially

eligible for both copyright and patent protection.

Critics say that’s a mistake. They argue that the

complex and expensive patent system is a terrible fit

App-77

for the fast-moving software industry. And they

argue that patent protection is unnecessary because

software innovators already have copyright

protection available.”).

Importantly for our purposes, the Supreme Court

has made clear that “[n]either the Copyright Statute

nor any other says that because a thing is patentable

it may not be copyrighted.” Mazer v. Stein, 347 U.S.

201, 217 (1954). Indeed, the thrust of the CONTU

Report is that copyright is “the most suitable mode of

legal protection for computer software.” Peter S.

Menell, An Analysis of the Scope of Copyright

Protection for Application Programs, 41 Stan. L. Rev.

1045, 1072 (1989); see also CONTU Report at 1

(recommending that copyright law be amended “to

make it explicit that computer programs, to the

extent that they embody an author’s original

creation, are proper subject matter of copyright”).

Until either the Supreme Court or Congress tells us

otherwise, we are bound to respect the Ninth

Circuit’s decision to afford software programs

protection under the copyright laws. We thus decline

any invitation to declare that protection of software

programs should be the domain of patent law, and

only patent law.

CONCLUSION

For the foregoing reasons, we conclude that the

declaring code and the structure, sequence, and

organization of the 37 Java API packages at issue are

entitled to copyright protection. We therefore reverse

the district court’s copyrightability determination

with instructions to reinstate the jury’s infringement

verdict. Because the jury hung on fair use, we

App-78

remand Google’s fair use defense for further

proceedings consistent with this decision.

With respect to Google’s cross-appeal, we affirm

the district court’s decisions: (1) granting Oracle’s

motion for JMOL as to the eight decompiled Java

files that Google copied into Android; and (2) denying

Google’s motion for JMOL with respect to the

rangeCheck function. Accordingly, we affirm-in-part,

reverse-in-part, and remand for further proceedings.

AFFIRMED-IN-PART, REVERSED-IN-PART,

AND REMANDED

App-79

Appendix B

IN THE UNITED STATES DISTRICT COURT FOR

THE NORTHERN DISTRICT OF CALIFORNIA

ORACLE AMERICA, INC.,

Plaintiff,

v.

GOOGLE INC.,

Defendant.

No. C 10-03561 WHA

September 15, 2011

ORDER PARTIALLY GRANTING AND

PARTIALLY DENYING DEFENDANT’S

MOTION FOR SUMMARY JUDGMENT ON

COPYRIGHT CLAIM

INTRODUCTION

In this patent and copyright infringement action

involving features of Java and Android, defendant

moves for summary judgment on the copyright

infringement claim. With one exception described

below, the motion is DENIED.

STATEMENT

Oracle America Inc. accuses Google Inc. of

infringing some of Oracle’s Java-related copyrights in

portions of Google’s Android software platform.

Specifically, Oracle accuses twelve code files and 37

specifications for application programming interface

packages. The Java technology and the basics of

object-oriented programming were explained in the

claim construction order (Dkt. No. 137). An overview

of application programming interfaces and their role

in Java and Android is provided here.

App-80

1. APPLICATION PROGRAMMING INTERFACES

(APIS).

Conceptually, an API is what allows software

programs to communicate with one another. It is a

set of definitions governing how the services of a

particular program can be called upon, including

what types of input the program must be given and

what kind of output will be returned. APIs make it

possible for programs (and programmers) to use the

services of a given program without knowing how the

service is performed. APIs also insulate programs

from one another, making it possible to change the

way a given program performs a service without

disrupting other programs that use the service.

APIs typically are composed of “methods,” also

known as “functions,” which are software programs

that perform particular services. For example, a

programmer might write a software program method

A, which calculates the area of a room when given

the shape and dimensions of the room. A second

programmer then could write a program method

called B, which calculates the square footage of an

entire house when given the shape and dimensions of

each room. Rather than reinventing a new way to

calculate area, the second programmer could simply

write an instruction in B, “for each room, ask

program A to calculate the area; then add all of the

return values,” using, of course, real programming

language. As long as the second programmer knows

what A is named, what type of “arguments” A must

be given as inputs, and what return A outputs, the

second programmer can write a program that will

call on the services of A. The second programmer

App-81

does not need to know how A actually works, or is

“implemented.” There may in fact be multiple ways

to implement A — for example, different ways to

divide an oddly shaped room into geometric

components — and the first programmer may refine

his implementation of program A without disrupting

program B.

A method must be defined before it can be used.

A method can be “declared” (i.e., defined) in a

programming language such as Java by stating its

name and describing its argument(s) and return(s)

according to syntax conventions. Once a method has

been declared, it can documented and implemented.

Documentation is not code; it is a reference item that

provides programmers with information about the

method, its requirements, and its use. An

implementation is code that actually tells the

computer how to carry out the method. Often, as in

the example above, multiple implementations are

possible for a given method.

In object-oriented programming, methods are

grouped into “classes.” A class file typically contains

several methods and related data. Classes, in turn,

are grouped into “packages” known as API packages.

Whereas a class generally corresponds to a single file,

a package is more like a folder or directory providing

an organizational structure for the class files. A given

API package could contain many sub-packages, each

with its own classes and sub-classes, which in turn

contain their own methods. These elements generally

are named and grouped in ways that help human

programmers find, understand, and use them. A well

developed set of API packages, sometimes called a

App-82

“class library,” is a powerful tool for software

developers; as such, it can help attract developers to

a particular platform.

The specification for a class library — much like

the specification for an automobile — is an item of

detailed documentation that explains the

organization and function of all packages, classes,

methods, and data fields in the library. The class

library specification for a given software platform,

sometimes called the “API Specification” is an

important reference item for programmers. In order

to make effective use of the APIs, a programmer

must be able to find the portion of the specification

describing the particular package, class, and method

needed for a given programming task.

2. JAVA AND ANDROID.

As explained in previous orders, Java and

Android are both complex software platforms with

many components. For example, the Java platform

includes the Java programming language, Java class

libraries, the Java virtual machine, and other

elements. The Java programming language has been

made freely available for use by anyone without

charge. Both sides agree on this. Other aspects of the

Java platform, however, such as the virtual machine

and class libraries, allegedly are protected by patents

and copyrights.

The Android platform uses the Java

programming language; thus, software developers

already familiar with the Java language do not have

to learn a new language in order to write programs

for Android. In contrast to Java, the Android

App-83

platform uses the Dalvik virtual machine instead of

the Java virtual machine, provides Android class

libraries, and has other non-Java components. The

Java platform has been used primarily on desktop

computers, but it also has been used on cell phones

and other mobile computing devices. Android, on the

other hand, was designed specifically for mobile

devices. Java and Android compete in the market for

mobile computing software.

According to Oracle, Android is an unauthorized

and incompatible Java implementation. The Java

platform and the Android platform each includes

class libraries with more than one hundred API

packages. Android allegedly supports some, but not

all, of the APIs defined for the Java platform. Thus,

some programs written for the Java platform will not

run properly on the Android platform, even though

both use the Java language. Similarly, the Android

platform allegedly includes additional APIs that are

not part of the Java platform. Thus, some programs

written for the Android platform will not run

properly on the Java platform, even though they are

written in the Java language. This so-called

fragmentation undermines the “write once, run

anywhere” concept underlying the Java system and

supposedly damages Oracle by decreasing Java’s

appeal to software developers.

3. TERMINOLOGY

The term API is slippery. It has been used by the

parties and in the industry as shorthand to refer to

many related concepts, ranging from individual

methods to code implementations to entire class

libraries and specifications. In this order, the term

App-84

API will be used only to refer to the abstract concept

of an application programming interface. API

documentation (e.g., the specification for a class

library or for an API package within the library) and

API implementations (e.g., the source code relating to

a particular method within a class file) will be

referenced as such. Having clarified this linguistic

point, this order proceeds to consider the specific

items accused of copyright infringement in this

action: twelve files of code, and 37 API package

specifications.1

ANALYSIS

Summary judgment is proper when “there is no

genuine dispute as to any material fact and the

movant is entitled to judgment as a matter of law.”

FRCP 56(a). Where the party moving for summary

judgment would bear the burden of proof at trial,

that party bears the initial burden of producing

evidence that would entitle it to a directed verdict if

uncontroverted at trial. See C.A.R. Transp. Brokerage

Co. v. Darden Rests., Inc., 213 F.3d 474, 480 (9th Cir.

2000). Where the party moving for summary

judgment would not bear the burden of proof at trial,

that party bears the initial burden of either

producing evidence that negates an essential element

of the non-moving party’s claims, or showing that the

1 At the hearing, counsel for Oracle suggested that Google’s code

implementations of the 37 API package specifications are

unauthorized derivative works. This theory was disclosed by

Oracle during discovery (Dkt. No. 263-3 at 11), but it was

dismissed summarily in Google’s summary judgment brief (Br.

9). Because the briefing does not address this theory, it will not

be addressed herein.

App-85

non-moving party does not have enough evidence of

an essential element to carry its ultimate burden of

persuasion at trial. If the moving party satisfies its

initial burden of production, then the non-moving

party must produce admissible evidence to show

there exists a genuine issue of material fact. See

Nissan Fire & Marine Ins. Co. v. Fritz Cos., 210 F.3d

1099, 1102–03 (9th Cir. 2000).

Copyright protection subsists in “original works

of authorship fixed in any tangible medium of

expression.” 17 U.S.C. 102. In order to succeed on a

copyright infringement claim, a plaintiff must show

that it owns the copyright and that the defendant

copied protected elements of the work. Only

expressive elements that are “original,” i.e.,

independently created, are protected. Copying can be

proven by showing that the alleged infringer had

access to the copyrighted work and that the protected

portions of the works are substantially similar. Jada

Toys, Inc. v. Mattel, Inc., 518 F.3d 628, 636–37 (9th

Cir. 2008). Google advances a number of arguments

why Oracle supposedly cannot prove all or part of its

copyright infringement claim. Google is entitled to

summary judgment on only one issue.

1. THE CODE FILES

Regarding the twelve code files at issue, Google

argues that its alleged copying was de minimis (Br.

22–24). In the copyright infringement context, “a

taking is considered de minimis only if it is so

meager and fragmentary that the average audience

would not recognize the appropriation.” Fisher v.

Dees, 794 F.2d 432, 434 n.2 (9th Cir. 1986). The

extent of the copying “is measured by considering the

App-86

qualitative and quantitative significance of the

copied portion in relation to the plaintiff’s work as a

whole.” Newton v. Diamond, 388 F.3d 1189, 1195 (9th

Cir. 2004).

Here, the parties dispute what constitutes the

plaintiff’s work as a whole. Google argues that its

alleged copying should be compared to the entire

Java platform, which Oracle registered as a single

work (Br. 22–23; Kwun Exh. B). Oracle, on the other

hand, argues that each of the twelve code files at

issue is a separate work for purposes of this analysis

(Opp. 23–24). Google has not shown that the Java

platform is the proper basis for comparison. Google

cites two provisions of the copyright regulations, but

neither one supports Google’s position (Reply Br. 12–

13).

First, Google misapplies 37 C.F.R.

202.3(b)(4)(i)(A). That provision states: “For the

purpose of registration on a single application and

upon payment of a single registration fee, the

following shall be considered a single work: (A) In the

case of published works: all copyrightable elements

that are otherwise recognizable as self-contained

works, that are included in a single unit of

publication, and in which the copyright claimant is

the same.” The plain meaning of this provision is that

when a single published unit contains multiple

elements “that are otherwise recognizable as self-

contained works,” the unit is considered a single

work for the limited purpose of registration, while its

elements may be recognized as separate works for

other purposes. Courts considering Section

202.3(b)(4)(i)(A) generally agree with this

App-87

interpretation. See, e.g., Tattoo Art, Inc. v. TAT Int’l.,

LLC, --- F. Supp. 2d. ---, No. 2:10cv323, 2011 WL

2585376, at *15–16 (E.D. Va. June 29, 2011)

(interpreting Section 202.3(b)(4)(i)(A) to codify the

principle that “the copyrights in multiple works may

be registered on a single form, and thus considered

one work for the purposes of registration while still

qualifying as separate ‘works’ for purposes of

awarding statutory damages”). Google relies on

Section 202.3(b)(4)(i)(A) to show that the code files

comprising the Java platform should be treated

collectively as a single work for purposes of an

infringement analysis. This interpretation is contrary

to the plain language of the regulation and is not

supported by any cited authority.

Second, Google cites to 37 C.F.R. 202.3(b)(3),

which concerns continuation sheets. Continuation

sheets are used “only in submissions for which a

paper application is used and where additional space

is needed by the applicant to provide all relevant

information.” 37 C.F.R 202.3(b)(3). The regulation

requires use of a separate continuation sheet “to list

contents titles, i.e., titles of independent works in

which copyright is being claimed and which appear

within a larger work.” Ibid. It does not, however,

state that a failure to list individual titles precludes

an applicant from later asserting those titles as

separate works in infringement litigation. Nor does it

address works registered by means other than a

paper application. Google does not provide enough

factual context to show that Section 202.3(b)(3)

applies to the works at issue, and Google does not

explain how it might bear upon the dispute at hand,

even if it does apply.

App-88

Google cites no other authority. This order finds

that, at least on the present record, Google has not

shown that the Java platform as a whole is the work

to which Google’s alleged copying should be

compared. Because all of Google’s de minimis

arguments compare the accused material in the code

files to the entire Java platform as a whole, this

order need not consider the de minimis question

further.

2. THE API PACKAGE SPECIFICATIONS.

Regarding the 37 API package specifications at

issue, which are reference items and not code, Google

argues that the only similarities between the accused

works and the asserted works are elements that are

not subject to copyright protection. Google, however,

does not specify which elements it views as similar.

Google instead presents an array of theories why

various categories of specification elements do not

merit copyright protection. With one exception, this

broad categorical approach fails. Google’s other

arguments regarding the API package specifications

— that the disputed works are not virtually identical

or substantially similar, and that Google’s alleged

copying was fair use — also fail to earn summary

judgment for Google.

A. Names.

“Words and short phrases such as names, titles,

and slogans” are “not subject to copyright.” 37 C.F.R.

202.1(a); Planesi v. Peters, No. 04-16936, slip op. at

*1 (9th Cir. Aug. 15, 2005). Google argues that “the

names of the Java language API files, packages,

classes, and methods are not protectable as a matter

App-89

of law” (Br. 17). This order agrees. Because names

and other short phrases are not subject to copyright,

the names of the various items appearing in the

disputed API package specifications are not

protected. See Sega Enters. Ltd. v. Accolade, Inc., 977

F.2d 1510, 1524 n.7 (9th Cir. 1992) (“Sega’s security

code is of such de minimis length that it is probably

unprotected under the words and short phrases

doctrine.”).

Oracle argues that it is entitled to a

“presumption that the names in the Java API

specifications are original” (Opp. 14). Not so. The

decision Oracle cites for this proposition shows only

that a certificate of registration may entitle its holder

to a presumption of copyright validity as to the

registered work. Swirsky v. Carey, 376 F.3d 841, 851

(9th Cir. 2004) (citing 17 U.S.C. 410(c)). Oracle cites

no authority requiring a presumption of originality

as to specific elements of a registered work.

Oracle also argues that its selection and

arrangement of component names within the

specifications is entitled to copyright protection (Opp.

15). This argument is non-responsive. Copyright

protection for the selection and arrangement of

elements within a work is a separate question from

whether the elements themselves are protected by

copyright. In finding that the names of the various

items appearing in the disputed API package

specifications are not protected by copyright, this

order does not foreclose the possibility that the

selection or arrangement of those names is subject to

copyright protection. See Lamps Plus, Inc. v. Seattle

Lighting Fixture Co., 345 F.3d 1140, 1147 (9th Cir.

App-90

2003) (“[A] combination of unprotectable elements is

eligible for copyright protection only if those elements

are numerous enough and their selection and

arrangement original enough that their combination

constitutes an original work of authorship.”)

(emphasis added).

Having found that the names of the various

items appearing in the disputed API package

specifications are not protected by copyright on

account of the words and short phrases doctrine, this

order need not consider Google’s alternative theory

that the names are unprotected because they are the

result of customary programming practices.

B. Scenes a Faire and the Merger

Doctrine.

“Under the scenes a faire doctrine, when certain

commonplace expressions are indispensable and

naturally associated with the treatment of a given

idea, those expressions are treated like ideas and

therefore not protected by copyright.” Swirsky v.

Carey, 376 F.3d at 850. “Under the merger doctrine,

courts will not protect a copyrighted work from

infringement if the idea underlying the copyrighted

work can be expressed in only one way, lest there be

a monopoly on the underlying idea.” Satava v. Lowry,

323 F.3d 805, 812 n.5 (9th Cir. 2003).

Google argues that “[t]he API declarations are

unprotectable scenes a faire or unprotectable under

the merger doctrine” (Br. 14). Google, however, does

not specify what it means by “API declarations.”

Google applies this argument to all of “[t]he allegedly

copied elements of the Java language API packages,”

App-91

providing only a few examples: “the names of

packages and methods and definitions” (id. at 14–16).

To the extent Google directs this argument to names,

it is moot in light of the above ruling. To the extent

Google directs this argument to other elements of the

API package specifications, it is not adequately

supported.

Google’s lack of specificity is fatal. If Google

believes, for example, that a particular method

declaration is a scene a faire or is the only possible

way to express a given function, then Google should

provide evidence and argument supporting its views

as to that method declaration. Instead, Google argues

— relying mostly on non-binding authority2 — that

entire categories of elements in API specifications do

not merit copyright protection. This approach ignores

the possibility that some method declarations (for

example) may be subject to the merger doctrine or

may be scenes a faire, whereas other method

declarations may be creative contributions subject to

copyright protection. Google has not justified the

sweeping ruling it requests. Google has not even

identified which categories of specification elements

it deems unprotectable under these doctrines. This

order declines to hold that API package

specifications, or any particular category of elements

they contain, are unprotectable under the scenes a

faire or merger doctrines.

2 The only binding authority Google cites is the Sega decision.

The cited discussion addresses computer program code, not

documentation. Google has not justified applying the Sega

rationale to documentation such as the API package

specifications at issue here.

App-92

C. Methods of Operation.

“In no case does copyright protection for an

original work of authorship extend to any idea,

procedure, process, system, method of operation,

concept, principle, or discovery, regardless of the

form in which it is described, explained, illustrated,

or embodied in such work.” 17 U.S.C. 102(b)

(emphasis added). Google argues that “APIs for a

programming language” are unprotected methods of

operation (Br. 13). Google, however, does not use the

term API consistently in the relevant portions of its

briefs, so it is unclear precisely what Google is

attempting to characterize as a method of operation.

Google states that all “elements common to Oracle’s

Java language APIs and the Android APIs are

unprotectable methods of operation,” but Google does

not specify which elements it views as common (id. at

12). Context suggests two possible interpretations for

Google’s use of the term APIs. Both of Google’s

apparent arguments are unavailing.

First, Google appears to direct its methods-of-

operation argument to APIs themselves as the term

is used in this order — that is, to the abstract concept

of an interface between programs. In its reply brief,

Google distinguishes APIs both from their

implementation in libraries of code (“the APIs are not

the libraries themselves”) and from their

documentation in reference materials (“The APIs do

not ‘tell’ how to use the libraries, they are the means

by which one uses the libraries; the documentation

for the APIs ‘tells’ how to use the libraries.”) (Reply

Br. 2–3). Google’s argument that APIs are

unprotectable methods of operation attacks a straw

App-93

man. It is not the APIs but rather the specifications

for 37 API packages that are accused. Even if Google

can show that APIs are methods of operation not

subject to copyright protection, that would not defeat

Oracle’s infringement claim concerning the accused

specifications.

Google may be trying to head off a possible

argument by Oracle that the APIs described in the

specifications are nonliteral elements of the

specifications subject to copyright protection. It is

unclear whether Oracle is advancing such an

argument. Oracle’s opposition brief seems to use the

term API to refer to API packages and API package

specifications. If this interpretation is correct, then

the parties’ arguments concerning whether “APIs”

are methods of operation simply swipe past each

other, with each party using the term in a different

way. Because the issue is not properly teed up for

summary judgment, this order does not decide

whether APIs are methods of operation.

Second, Google also states that “API

specifications are methods of operation” (Br. 14). This

conclusion does not follow from Google’s argument

that APIs — meaning conceptual interfaces between

programs — are methods of operation. No other

supporting argument is provided. API specifications

are written documentation. Even if Google could show

that APIs are methods of operation, that would not

mean that a written work that describes or embodies

APIs is automatically exempt from copyright

protection. This order finds that the API package

specifications at issue are not “methods of operation”

under 17 U.S.C. 102(b).

App-94

D. Degree of Similarity.

The copying element of copyright infringement

generally can be proven by showing that the alleged

infringer had access to the copyrighted work and that

the protected portions of the works are substantially

similar. Jada Toys, 518 F.3d at 636–37. “When the

range of protectable and unauthorized expression is

narrow,” however, “the appropriate standard for

illicit copying is virtual identity” rather than

substantial similarity. Apple Computer, Inc. v.

Microsoft Corp., 35 F.3d 1435, 1439 (9th Cir. 1994).

Google argues that “[g]iven the substantial

unprotected elements in the documentation (such as

the API method declarations), the ‘virtual identity’

standard applies here” (Br. 24). This order agrees

with Google that the names of the various items

appearing in the disputed API package specifications

are not protected by copyright. Google, however, has

not shown that any other elements of the

specifications are exempt from copyright protection.

Because Google has not proven that a substantial

portion of the specifications is unprotected, Google’s

justification for applying the virtual identity

standard fails. This order therefore need not consider

Google’s arguments that the disputed Java and

Android API package specifications are not virtually

identical. In particular, Google analyzes the selection

and arrangement of elements within the

specifications under only the virtual identity

standard (Br. 24–25).

As a fallback position, Google argues that even

under the substantial similarity standard, the

disputed Java and Android API package

App-95

specifications are not sufficiently similar to show

copying. Google analogizes the specifications to

dictionary definitions whose similarities are driven

by external constraints, and Google cites an expert

opinion that the Java and Android platforms are not

substantially similar (Br. 24; Astrachan Exh. 1 at

77). Predictably, Oracle presents an opposing expert

opinion that the API package specifications at issue

are substantially similar (Mitchell Exh. 1 at 45). This

conflicting expert testimony highlights a factual issue

that precludes summary judgment; a reasonable trier

of fact might agree with either expert’s analysis of

the degree of similarity between the asserted and

accused specifications.

Google argues that Oracle’s expert testimony is

not sufficient to defeat summary judgment. Google

criticizes the expert for offering a “summary

‘conclusion’” based on a “single illustrative example,”

which Google interprets differently (Reply Br. 11). In

his report, however, the expert provides multiple

examples and explains that he conducted a detailed

comparison of each of the API package specification

pairs at issue (Mitchell Exh. 1 at 60–63). His opinion

that the Android specifications are substantially

similar to their Java counterparts is not a mere

“[c]onclusory statement[] without factual support.”

See Surrell v. Cal. Water Serv. Co., 518 F.3d 1097,

1103 (9th Cir. 2008). If Google disputes the basis for

the opinion by Oracle’s expert or his analysis of the

specifications, then Google should raise its critiques

during crossexamination at trial. Google has not

earned summary judgment of no copying under

either of the possible standards for comparison —

virtual identity or substantial similarity.

App-96

E. Fair Use.

The following factors are considered in

determining whether the use made of a work is a fair

use: (1) the purpose and character of the use,

including whether such use is of a commercial nature

or is for nonprofit educational purposes; (2) the

nature of the copyrighted work; (3) the amount and

substantiality of the portion used in relation to the

copyrighted work as a whole; and (4) the effect of the

use upon the potential market for or value of the

copyrighted work. 17 U.S.C. 107. Google argues that

its alleged use of elements from the Java API

package specifications in its Android API

specifications was fair (Br. 19–22). Evaluation of the

fair use factors, however, depends upon disputed

questions of material fact. As such, no finding of fair

use can be made on the summary judgment record.

For example, with respect to factor four, Google

argues that “Android has contributed positively to

the market for the copyrighted works by increasing

the number of Java language developers” (Br. 21).

Google cites positive reactions by Sun executives at

the time when Android was first released in 2007.

These statements do not prove anything about

Android’s actual impact on the Java market since

that time. Moreover, Oracle presents sworn

testimony that Android fragmented the Java

platform and locked Java out of the smartphone

market (Swoopes Exh. 6 at 111–12). Oracle and

Google both employ complex business models for

their respective products. The question of damages is

one of the most complicated and hotly contested

issues in this action. On the present record, a

App-97

reasonable fact finder could disagree with Google’s

rosy depiction of Android’s impact on the Java

market.

Because fact issues preclude a summary

judgment finding of fair use, this order does not

reach the parties’ arguments on all of the fair use

factors.

* * *

This order finds that the names of the various

items appearing in the disputed API package

specifications are not protected by copyright. This

order makes no finding as to whether any other

elements of the API package specifications (or their

selection or arrangement) are protected or infringed.

3. INDIRECT INFRINGEMENT.

Google argues that Oracle’s indirect copyright

infringement theories fail because Oracle cannot

establish any underlying direct copyright

infringement (Br. 25). Because Google is not entitled

to summary judgment on direct infringement, Google

also is not entitled to summary judgment on indirect

infringement.

CONCLUSION

For the foregoing reasons, defendant’s motion for

summary judgment on the copyright infringement

claim is GRANTED IN PART AND DENIED IN PART.

This order finds that the names of the various items

appearing in the disputed API package specifications

are not protected by copyright. To that extent, the

motion is GRANTED. All of defendant’s other

summary judgment theories regarding the copyright

App-98

claim are DENIED. Plaintiff’s evidentiary objections

to the Bornstein declaration and the Astrachan

declaration are MOOT.

IT IS SO ORDERED.

Dated: September 15, 2011.

/s/

WILLIAM ALSUP, UNITED STATES DISTRICT JUDGE

App-99

Appendix C

IN THE UNITED STATES DISTRICT COURT FOR

THE NORTHERN DISTRICT OF CALIFORNIA

ORACLE AMERICA, INC.,

Plaintiff,

v.

GOOGLE INC.,

Defendant.

No. C 10-03561 WHA

ORDER ON MOTIONS FOR JUDGMENT

AS A MATTER OF LAW

For the reasons stated at the May 9 hearing,

Oracle’s motion for judgment as a matter of law

regarding fair use, API documentation, and

comment-copied files is DENIED; Google’s motion for

judgment as a matter of law regarding rangeCheck is

DENIED.

IT IS SO ORDERED.

Dated: May 10, 2012.

/s/

WILLIAM ALSUP, UNITED STATES DISTRICT JUDGE

App-100

Appendix D

IN THE UNITED STATES DISTRICT COURT FOR

THE NORTHERN DISTRICT OF CALIFORNIA

ORACLE AMERICA, INC.,

Plaintiff,

v.

GOOGLE INC.,

Defendant.

No. C 10-03561 WHA

May 31, 2012

ORDER REGARDING COPYRIGHTABILITY

OF CERTAIN REPLICATED ELEMENTS OF

THE JAVA APPLICATION PROGRAMMING

INTERFACE

INTRODUCTION

This action was the first of the so-called

“smartphone war” cases tried to a jury. This order

includes the findings of fact and conclusions of law on

a central question tried simultaneously to the judge,

namely the extent to which, if at all, certain

replicated elements of the structure, sequence and

organization of the Java application programming

interface are protected by copyright.

PROCEDURAL HISTORY

In 2007, Google Inc., announced its Android

software platform for mobile devices. In 2010, Oracle

Corporation acquired Sun Microsystems, Inc., and

thus acquired Sun’s interest in the popular

programming language known as Java, a language

used in Android. Sun was renamed Oracle America,

Inc. Shortly thereafter, Oracle America (hereinafter

simply “Oracle”) sued defendant Google and accused

App-101

its Android platform as infringing Oracle’s Java-

related copyrights and patents. Both Java and

Android are complex platforms. Both include “virtual

machines,” development and testing kits, and

application programming interfaces, also known as

APIs. Oracle’s copyright claim involves 37 packages

in the Java API. Copyrightability of the elements

replicated is the only issue addressed by this order.

Due to complexity, the Court decided that the

jury (and the judge) would best understand the

issues if the trial was conducted in phases. The first

phase covered copyrightability and copyright

infringement as well as equitable defenses. The

second phase covered patent infringement. The third

phase would have dealt with damages but was

obviated by stipulation and verdicts.

For the first phase, it was agreed that the judge

would decide issues of copyrightability and Google’s

equitable defenses and that the jury would decide

infringement, fair use, and whether any copying was

de minimis. Significantly, all agreed that Google had

not literally copied the software but had instead come

up with its own implementations of the 37 API

packages. Oracle’s central claim, rather, was that

Google had replicated the structure, sequence and

organization of the overall code for the 37 API

packages.

For their task of determining infringement and

fair use, the jury was told it should take for granted

that the structure, sequence and organization of the

37 API packages as a whole was copyrightable. This,

however, was not a final definitive legal ruling. One

reason for this instruction was so that if the judge

App-102

ultimately ruled, after hearing the phase one

evidence, that the structure, sequence and

organization in question was not protectable but was

later reversed in this regard, the court of appeals

might simply reinstate the jury verdict. In this way,

the court of appeals would have a wider range of

alternatives without having to worry about an

expensive retrial. Counsel were so informed but not

the jury.

Each side was given seventeen hours of “air

time” for phase one evidence (not counting openings,

closings or motion practice). In phase one, as stated,

the parties presented evidence on copyrightability,

infringement, fair use, and the equitable defenses. As

to the compilable code for the 37 Java API packages,

the jury found that Google infringed but deadlocked

on the follow-on question of whether the use was

protected by fair use. As to the documentation for the

37 Java API packages, the jury found no

infringement. As to certain small snippets of code,

the jury found only one was infringing, namely, the

nine lines of code called “rangeCheck.” In phase two,

the jury found no patent infringement across the

board. (Those patents, it should be noted, had

nothing to do with the subject addressed by this

order.) The entire jury portion of the trial lasted six

weeks.1

1 After the jury verdict, the Court granted Oracle’s Rule 50

motion for judgment as a matter of law of infringement of eight

decompiled computer files, which were literally copied. Google

admitted to copying eight computer files by decompiling the

bytecode from eight Java files into source code and then copying

App-103

This order addresses and resolves the core

premise of the main copyright claims, namely,

whether the elements replicated by Google from the

Java system were protectable by copyright in the

first place. No law is directly on point. This order

relies on general principles of copyright law

announced by Congress, the Supreme Court and the

Ninth Circuit.

* * *

Counsel on both sides have supplied excellent

briefing and the Court wishes to recognize their

extraordinary effort and to thank counsel, including

those behind the scenes burning midnight oil in law

libraries, for their assistance.

SUMMARY OF RULING

So long as the specific code used to implement a

method is different, anyone is free under the

Copyright Act to write his or her own code to carry

out exactly the same function or specification of any

methods used in the Java API. It does not matter

that the declaration or method header lines are

identical. Under the rules of Java, they must be

identical to declare a method specifying the same

functionality — even when the implementation is

different. When there is only one way to express an

idea or function, then everyone is free to do so and no

one can monopolize that expression. And, while the

Android method and class names could have been

different from the names of their counterparts in

the source code. These files were not proven to have ever been

part of Android.

App-104

Java and still have worked, copyright protection

never extends to names or short phrases as a matter

of law.

It is true that the very same functionality could

have been offered in Android without duplicating the

exact command structure used in Java. This could

have been done by re-arranging the various methods

under different groupings among the various classes

and packages (even if the same names had been

used). In this sense, there were many ways to group

the methods yet still duplicate the same range of

functionality.

But the names are more than just names — they

are symbols in a command structure wherein the

commands take the form

java.package.Class.method()

Each command calls into action a pre-assigned

function. The overall name tree, of course, has

creative elements but it is also a precise command

structure — a utilitarian and functional set of

symbols, each to carry out a pre-assigned function.

This command structure is a system or method of

operation under Section 102(b) of the Copyright Act

and, therefore, cannot be copyrighted. Duplication of

the command structure is necessary for

interoperability.

STATEMENT OF FINDINGS

1. JAVA AND ANDROID.

Java was developed by Sun, first released in

1996, and has become one of the world’s most popular

App-105

programming languages and platforms.2 The Java

platform, through the use of a virtual machine,

enables software developers to write programs that

are able to run on different types of computer

hardware without having to rewrite them for each

different type. Programs that run on the Java

platform are written in the Java language. Java was

developed to run on desktop computers and

enterprise servers.3

The Java language, like C and C++, is a human-

readable language. Code written in a human-

readable language — “source code” — is not readable

by computer hardware. Only “object code,” which is

not human-readable, can be used by computers. Most

object code is in a binary language, meaning it

consists entirely of 0s and 1s. Thus, a computer

program has to be converted, that is, compiled, from

2 For purposes of this order, the term “Java” means the Java

platform, sometimes abbreviated to “J2SE,” which includes the

Java development kit (JDK), javac compiler, tools and utilities,

runtime programs, class libraries (API packages), and the Java

virtual machine.

3 Rather than merely vet each and every finding and conclusion

proposed by the parties, this order has navigated its own course

through the evidence and arguments, although many of the

proposals have found their way into this order. Any proposal

that has been expressly agreed to by the opposing side, however,

shall be deemed adopted (to the extent agreed upon) even if not

expressly adopted herein. It is unnecessary for this order to cite

the record for all of the findings herein. In the findings, the

phrase “this order finds . . .” is occasionally used to emphasize a

point. The absence of this phrase, however, does not mean (and

should not be construed to mean) that a statement is not a

finding. All declarative fact statements set forth in the order are

factual findings.

App-106

source code into object code before it can run, or

“execute.” In the Java system, source code is first

converted into “bytecode,” an intermediate form,

before it is then converted into binary machine code

by the Java virtual machine.

The Java language itself is composed of

keywords and other symbols and a set of pre-written

programs to carry out various commands, such as

printing something on the screen or retrieving the

cosine of an angle. The set of pre-written programs is

called the application programming interface or

simply API (also known as class libraries).

In 2008, the Java API had 166 “packages,”

broken into more than six hundred “classes,” all

broken into over six thousand “methods.” This is very

close to saying the Java API had 166 “folders”

(packages), all including over six hundred pre-

written programs (classes) to carry out a total of over

six thousand subroutines (methods). Google

replicated the exact names and exact functions of

virtually all of these 37 packages but, as stated, took

care to use different code to implement the six

thousand-plus subroutines (methods) and six-

hundred-plus classes.

An API is like a library. Each package is like a

bookshelf in the library. Each class is like a book on

the shelf. Each method is like a how-to-do-it chapter

in a book. Go to the right shelf, select the right book,

and open it to the chapter that covers the work you

need. As to the 37 packages, the Java and Android

libraries are organized in the same basic way but all

of the chapters in Android have been written with

implementations different from Java but solving the

App-107

same problems and providing the same functions.

Every method and class is specified to carry out

precise desired functions and, thus, the “declaration”

(or “header”) line of code stating the specifications

must be identical to carry out the given function.4

The accused product is Android, a software

platform developed by Google for mobile devices. In

August 2005, Google acquired Android, Inc., as part

of a plan to develop a smartphone platform. Google

decided to use the Java language for the Android

platform. In late 2005, Google began discussing with

Sun the possibility of taking a license to use and to

adapt the entire Java platform for mobile devices.

They also discussed a possible co-development

partnership deal with Sun under which Java

technology would become an open-source part of the

Android platform, adapted for mobile devices. Google

and Sun negotiated over several months, but they

were unable to reach a deal.

In light of its inability to reach agreement with

Sun, Google decided to use the Java language to

design its own virtual machine via its own software

and to write its own implementations for the

functions in the Java API that were key to mobile

devices. Specifically, Google wrote or acquired its

own source code to implement virtually all the

functions of the 37 API packages in question.

Significantly, all agree that these implementations —

4 The term “declaration” was used throughout trial to describe

the headers (non-implementing code) for methods and classes.

While “header” is the more technically accurate term, this order

will remain consistent with the trial record and use

“declaration” and “header” interchangeably.

App-108

which account for 97 percent of the lines of code in

the 37 API packages — are different from the Java

implementations. In its final form, the Android

platform also had its own virtual machine (the so-

called Dalvik virtual machine), built with software

code different from the code for the Java virtual

machine.

As to the 37 packages at issue, Google believed

Java application programmers would want to find

the same 37 sets of functionalities in the new

Android system callable by the same names as used

in Java. Code already written in the Java language

would, to this extent, run on Android and thus

achieve degree of interoperability.

The Android platform was released in 2007. The

first Android phones went on sale the following year.

Android-based mobile devices rapidly grew in

popularity and now comprise a large share of the

United States market. The Android platform is

provided free of charge to smartphone

manufacturers. Google receives revenue through

advertisement whenever a consumer uses particular

functions on an Android smartphone. For its part,

Sun and Oracle never successfully developed its own

smartphone platform using Java technology. All

agree that Google was and remains free to use the

Java language itself.

All agree that Google’s virtual machine is free of

any copyright issues. All agree that the six-thousand-

plus method implementations by Google are free of

copyright issues. The copyright issue, rather, is

whether Google was and remains free to replicate the

names, organization of those names, and

App-109

functionality of 37 out of 166 packages in the Java

API, which has sometimes been referred to in this

litigation as the “structure, sequence and

organization” of the 37 packages.

The Android platform has its own API. It has

168 packages, 37 of which are in contention.

Comparing the 37 Java and Android packages side by

side, only three percent of the lines of code are the

same. The identical lines are those lines that specify

the names, parameters and functionality of the

methods and classes, lines called “declarations” or

“headers.” In particular, the Android platform

replicated the same package, method and class

names, definitions and parameters of the 37 Java

API packages from the Java 2SE 5.0 platform. This

three percent is the heart of our main copyright

issue.

A side-by-side comparison of the 37 packages in

the J2SE 5.0 version of Java versus in the Froyo

version of Android shows that the former has a total

of 677 classes (plus interfaces) and 6508 methods

wherein the latter has 616 and 6088, respectively.

Twenty-one of the packages have the same number of

classes, interfaces and methods, although, as stated,

the method implementations differ.

The three percent of source code at issue includes

“declarations.” Significantly, the rules of Java dictate

the precise form of certain necessary lines of code

called declarations, whose precise and necessary form

explains why Android and Java must be identical

when it comes to those particular lines of code. That

is, since there is only one way to declare a given

method functionality, everyone using that function

App-110

must write that specific line of code in the same way.

The same is true for the “calls,” the commands that

invoke the methods. To see why this is so, this order

will now review some of the key rules for Java

programming. This explanation will start at the

bottom and work its way upward.

2. THE JAVA LANGUAGE AND ITS API—

IMPORTANT DETAILS.

Java syntax includes separators (e.g., {, }, ;),

operators (e.g., +, -, *, /, <, >), literal values (e.g., 123,

‘x’, “Foo”), and keywords (e.g., if, else, while, return).

These elements carry precise predefined meanings.

Java syntax also includes identifiers (e.g., String,

java.lang.Object), which are used to name specific

values, fields, methods, and classes as described

below.

These syntax elements are used to form

statements, each statement being a single command

executed by the Java compiler to take some action.

Statements are run in the sequence written.

Statements are commands that tell the computer to

do work.

A method is like a subroutine. Once declared, it

can be invoked or “called on” elsewhere in the

program. When a method is called on elsewhere in

the program or in an application, “arguments” are

usually passed to the method as inputs. The output

from the method is known as the “return.” An

example is a method that receives two numbers as

inputs and returns the greater of the two as an

output. Another example is a method that receives an

angle expressed in degrees and returns the cosine of

App-111

that angle. Methods can be much more complicated.

A method, for example, could receive the month and

day and return the Earth’s declination to the sun for

that month and day.

A method consists of the method header and the

method body. A method header contains the name of

the method; the number, order, type and name of the

parameters used by the method; the type of value

returned by the method; the checked exceptions that

the method can throw; and various method modifiers

that provide additional information about the

method. At the trial, witnesses frequently referred to

the method header as the “declaration.” This

discrepancy has no impact on the ultimate analysis.

The main point is that this header line of code

introduces the method body and specifies very

precisely its inputs, name and other functionality.

Anyone who wishes to supply a method with the

same functionality must write this line of code in the

same way and must do so no matter how different

the implementation may be from someone else’s

implementation.

The method body is a block of code that then

implements the method. If a method is declared to

have a return type, then the method body must have

a statement and the statement must include the

expression to be returned when that line of code is

reached. During trial, many witnesses referred to the

method body as the “implementation.” It is the

method body that does the heavy lifting, namely the

actual work of taking the inputs, crunching them,

and returning an answer. The method body can be

short or long. Google came up with its own

App-112

implementations for the method bodies and this

accounts for 97 percent of the code for the 37

packages.

Once the method is written, tested and in place,

it can be called on to do its work. A method call is a

line of code somewhere else, such as in a different

program that calls on (or invokes) the method and

specifies the arguments to be passed to the method

for crunching. The method would be called on using

the command format “java.package.Class.method()”

where () indicates the inputs passed to the method.

For example, a = java.package.Class.method() would

set the field “a” to equal the return of the method

called. (The words “java.package.Class.method”

would in a real program be other names like

“java.lang.Math.max”; “java.package.Class.method”

is used here simply to explain the format.)

After a method, the next higher level of syntax is

the class. A class usually includes fields that hold

values (such as pi = 3.141592) and methods that

operate on those values. Classes are a fundamental

structural element in the Java language. A Java

program is written as one or more classes. More than

one method can be in a class and more than one class

can be in a package. All code in a Java program must

be placed in a class. A class declaration (or header) is

a line that includes the name of the class and other

information that define the class. The body of the

class includes fields and methods, and other

parameters.

Classes can have subclasses that “inherit” the

functionality of the class itself. When a new subclass

is defined, the declaration line uses the word

App-113

“extends” to alert the compiler that the fields and

methods of the parent class are inherited

automatically into the new subclass so that only

additional fields or methods for the subclass need to

be declared.

The Java language does not allow a class to

extend (be a subclass of) more than one parent class.

This restrictiveness may be problematic when one

class needs to inherit fields and methods from two

different non-related classes. The Java programming

language alleviates this dilemma through the use of

“interfaces,” which refers to something different from

the word “interface” in the API acronym. An interface

is similar to a class. It can also contain methods. It is

also in its own source code file. It can also be

inherited by classes. The distinction is that a class

may inherit from more than one interface whereas,

as mentioned, a class can only inherit from one other

class.

For convenience, classes and interfaces are

grouped into “packages” in the same way we all

group files into folders on our computers. There is no

inheritance function within packages; inheritance

occurs only at the class and interface level.

Here is a simple example of source code that

illustrates methods, classes and packages. The

italicized comments on the right are merely

explanatory and are not compiled:

package java.lang; // Declares package java.lang

public class Math { // Declares class Math

public static int

max (int x, int y) {

// Declares method max

App-114

if (x > y) return x; // Implementation, returns x or

else return y; // Implementation, returns y

} // Closes method

} // Closes class

To invoke this method from another program (or

class), the following call could be included in the

program:

int a = java.lang.Math.max (2, 3);

Upon reaching this statement, the computer would

go and find the max method under the Math class in

the java.lang package, input “2” and “3” as

arguments, and then return a “3,” which would then

be set as the value of “a.”

The above example illustrates a point critical to

our first main copyright issue, namely that the

declaration line beginning “public static” is entirely

dictated by the rules of the language. In order to

declare a particular functionality, the language

demands that the method declaration take a

particular form. There is no choice in how to express

it. To be specific, that line reads:

public static int max (int x, int y) {

The word “public” means that other programs can

call on it. (If this instead says “private,” then it can

only be accessed by other methods inside the same

class.) The word “static” means that the method can

be invoked without creating an instance of the class.

(If this instead is an instance method, then it would

always be invoked with respect to an object.) The

word “int” means that an integer is returned by the

method. (Other alternatives are “boolean,” “char,”

App-115

and “String” which respectively mean “true/false,”

“single character,” and “character string.”) Each of

these three parameters is drawn from a short menu

of possibilities, each possibility corresponding to a

very specific functionality. The word “max” is a name

and while any name (other than a reserved word)

could have been used, names themselves cannot be

copyrighted, as will be shown. The phrase “(int x, int

y)” identifies the arguments that must be passed into

the method, stating that they will be in integer form.

The “x” and the “y” could be “a” and “b” or “arg1” and

“arg2,” so there is a degree of creativity in naming

the arguments. Again, names cannot be copyrighted.

(Android did not copy all of the particular argument

names used in Java but did so as to some

arguments.) Finally, “{” is the beginning marker that

tells the compiler that the method body is about to

follow. The marker is mandatory. The foregoing

description concerns the rules for the language itself.

Again, each parameter choice other than the names

has a precise functional choice. If someone wants to

implement a particular function, the declaration

specification can only be written in one way.

Part of the declaration of a method can list any

exceptions. When a program violates the semantic

constraints of the Java language, the Java virtual

machine will signal this error to the program as an

exception for special handling. These are specified via

“throw” statements appended at the end of a

declaration. Android and Java are not identical in

their throw designations but they are very similar as

to the 37 packages at issue.

App-116

A Java program must have at least one class. A

typical program would have more than one method in

a class. Packages are convenient folders to organize

the classes.

This brings us to the application programming

interface. When Java was first introduced in 1996,

the API included eight packages of pre-written

programs. At least three of these packages were

“core” packages, according to Sun, fundamental to

being able to use the Java language at all. These

packages were java.lang, java.io, and java.util. As a

practical matter, anyone free to use the language

itself (as Oracle concedes all are), must also use the

three core packages in order to make any worthwhile

use of the language. Contrary to Oracle, there is no

bright line between the language and the API.

Each package was broken into classes and those

in turn broken into methods. For example, java.lang

(a package) included Math (a class) which in turn

included max (a method) to return the greater of two

inputs, which was (and remains) callable as

java.lang.Math.max with appropriate arguments

(inputs) in the precise form required (see the example

above).

After Java’s introduction in 1996, Sun and the

Java Community Process, a mechanism for

developing a standard specifications for Java classes

and methods, wrote hundreds more programs to

carry out various nifty functions and they were

organized into coherent packages by Sun to become

the Java application programming interface. In 2008,

as stated, the Java API had grown from the original

eight to 166 packages with over six hundred classes

App-117

with over six thousand methods. All of it was

downloadable from Sun’s (now Oracle’s) website and

usable by anyone, including Java application

developers, upon agreement to certain license

restrictions. Java was particularly useful for writing

programs for use via the Internet and desktop

computers.

Although the declarations must be the same to

achieve the same functionality, the names of the

methods and the way in which the methods are

grouped do not have to be the same. Put differently,

many different API organizations could supply the

same overall range of functionality. They would not,

however, be interoperable. Specifically, code written

for one API would not run on an API organized

differently, for the name structure itself dictates the

precise form of command to call up any given

method.

To write a fresh program, a programmer names a

new class and adds fields and methods. These

methods can call upon the pre-written functions in

the API. Instead of re-inventing the wheels in the

API from scratch, programmers can call on the tried-

and-true pre-packaged programs in the API. These

are ready-made to perform a vast menu of functions.

This is the whole point of the API. For example, a

student in high school can write a program that can

call upon java.lang.Math.max to return the greater of

two numbers, or to find the cosine of an angle, as one

step in a larger homework assignment. Users and

developers can supplement the API with their own

specialized methods and classes.

App-118

The foregoing completes the facts necessary to

decide the copyrightability issue but since Oracle has

made much of two small items copied by Google, this

order will now make findings thereon so that there

will be proper context for the court of appeals.

3. RANGECHECK AND THE DE-COMPILED TEST

FILES.

Oracle has made much of nine lines of code that

crept into both Android and Java. This circumstance

is so innocuous and overblown by Oracle that the

actual facts, as found herein by the judge, will be set

forth below for the benefit of the court of appeals.

Dr. Joshua Bloch worked at Sun from August

1996 through July 2004, eventually holding the title

of distinguished engineer. While working at Sun, Dr.

Bloch wrote a nine-line code for a function called

“rangeCheck,” which was put into a larger file,

“Arrays.java,” which was part of the class library for

the 37 API packages at issue. The function of

rangeCheck was to check the range of a list of values

before sorting the list. This was a very simple

function.

In 2004, Dr. Bloch left Sun to work at Google,

where he came to be the “chief Java architect” and

“Java guru.” Around 2007, Dr. Bloch wrote the files,

“Timsort.java” and “ComparableTimsort,” both of

which included the same rangeCheck function he

wrote while at Sun. He wrote the Timsort files in his

own spare time and not as part of any Google project.

He planned to contribute Timsort and

ComparableTimsort back to the Java community by

submitting his code to an open implementation of the

App-119

Java platform, OpenJDK, which was controlled by

Sun. Dr. Bloch did, in fact, contribute his Timsort file

to OpenJDK and Sun included Timsort as part of its

Java J2SE 5.0 release.

In 2009, Dr. Bloch worked on Google’s Android

project for approximately one year. While working on

the Android team, Dr. Bloch also contributed Timsort

and ComparableTimsort to the Android platform.

Thus, the nine-line rangeCheck function was copied

into Google’s Android. This was how the

infringement happened to occur. When discovered,

the rangeCheck lines were taken out of the then-

current version of Android over a year ago. The

rangeCheck block of code appeared in a class

containing 3,179 lines of code. This was an innocent

and inconsequential instance of copying in the

context of a massive number of lines of code.

Since the remainder of this order addresses only

the issue concerning structure, sequence and

organization, and since rangeCheck has nothing to do

with that issue, rangeCheck will not be mentioned

again, but the reader will please remember that it

has been readily conceded that these nine lines of

code found their way into an early version of Android.

Google also copied eight computer files by

decompiling the bytecode from eight Java files back

into source code and then using the source code.

These files were merely used as test files and never

found their way into Android or any handset. These

eight files have been treated at trial as a single unit.

Line by line, Oracle tested all fifteen million

lines of code in Android (and all files used to test

App-120

along the way leading up to the final Android) and

these minor items were the only items copied, save

and except for the declarations and calls which, as

stated, can only be written in one way to achieve the

specified functionality.

ANALYSIS AND CONCLUSIONS OF LAW

1. NAMES AND SHORT PHRASES.

To start with a clear-cut rule, names, titles and

short phrases are not copyrightable, according to the

United States Copyright Office, whose rule thereon

states as follows:

Copyright law does not protect names, titles,

or short phrases or expressions. Even if a

name, title, or short phrase is novel or

distinctive or lends itself to a play on words,

it cannot be protected by copyright. The

Copyright Office cannot register claims to

exclusive rights in brief combinations of

words such as:

 Names of products or services.

 Names of business organizations, or

groups (including the names of

performing groups).

 Pseudonyms of individuals (including

pen or stage names).

 Titles of works.

 Catchwords, catchphrases, mottoes,

slogans, or short advertising

expressions.

App-121

 Listings of ingredients, as in recipes,

labels, or formulas. When a recipe or

formula is accompanied by an

explanation or directions, the text

directions may be copyrightable, but the

recipe or formula itself remains

uncopyrightable.

U.S. Copyright Office, Circular 34; see 37 C.F.R.

202.1(a).

This rule is followed in the Ninth Circuit. Sega

Enters., Ltd. v. Accolade, Inc., 977 F.2d 1510, 1524

n.7 (9th Cir. 1992). This has relevance to Oracle’s

claim of copyright ownership over names of methods,

classes and packages.

2. THE DEVELOPMENT OF LAW ON THE

COPYRIGHTABILITY OF COMPUTER PROGRAMS AND

THEIR STRUCTURE, SEQUENCE AND ORGANIZATION.

Turning now to the more difficult question, this

trial showcases a distinction between copyright

protection and patent protection. It is an important

distinction, for copyright exclusivity lasts 95 years

whereas patent exclusivity lasts twenty years. And,

the Patent and Trademark Office examines

applications for anticipation and obviousness before

allowance whereas the Copyright Office does not.

This distinction looms large where, as here, the vast

majority of the code was not copied and the copyright

owner must resort to alleging that the accused stole

the “structure, sequence and organization” of the

work. This phrase — structure, sequence and

organization — does not appear in the Act or its

legislative history. It is a phrase that crept into use

App-122

to describe a residual property right where literal

copying was absent. A question then arises whether

the copyright holder is more appropriately asserting

an exclusive right to a functional system, process, or

method of operation that belongs in the realm of

patents, not copyrights.

A. Baker v. Seldon.

The general question predates computers. In the

Supreme Court’s decision in Baker v. Seldon, 101

U.S. 99 (1879), the work at issue was a book on a new

system of double-entry bookkeeping. It included

blank forms, consisting of ruled lines, and headings,

illustrating the system. The accused infringer copied

the method of bookkeeping but used different forms.

The Supreme Court framed the issue as follows:

The evidence of the complainant is

principally directed to the object of showing

that Baker uses the same system as that

which is explained and illustrated in

Selden’s books. It becomes important,

therefore, to determine whether, in

obtaining the copyright of his books, he

secured the exclusive right to the use of the

system or method of book-keeping which the

said books are intended to illustrate and

explain.

Id. at 101. Baker held that using the same accounting

system would not constitute copyright infringement.

The Supreme Court explained that only patent law

can give an exclusive right to a method:

To give to the author of the book an

exclusive property in the art described

App-123

therein, when no examination of its novelty

has ever been officially made, would be a

surprise and a fraud upon the public. That is

the province of letters-patent, not of

copyright. The claim to an invention or

discovery of an art or manufacture must be

subjected to the examination of the Patent

Office before an exclusive right therein can

be obtained; and it can only be secured by a

patent from the government.

Id. at 102. The Supreme Court went on to explain

that protecting the method under copyright law

would frustrate the very purpose of publication:

The copyright of a work on mathematical

science cannot give to the author an

exclusive right to the methods of operation

which he propounds, or to the diagrams

which he employs to explain them, so as to

prevent an engineer from using them

whenever occasion requires. The very object

of publishing a book on science or the useful

arts is to communicate to the world the

useful knowledge which it contains. But this

object would be frustrated if the knowledge

could not be used without incurring the guilt

of piracy of the book.

Id. at 103. Baker also established the “merger”

doctrine for systems and methods intermingled with

the texts or diagrams illustrating them:

And where the art it teaches cannot be used

without employing the methods and

diagrams used to illustrate the book, or such

App-124

as are similar to them, such methods and

diagrams are to be considered as necessary

incidents to the art, and given therewith to

the public; not given for the purpose of

publication in other works explanatory of the

art, but for the purpose of practical

application.

Ibid. It is true that Baker is aged but it is not passé.

To the contrary, even in our modern era, Baker

continues to be followed in the appellate courts, as

will be seen below.

B. The Computer Age and Section

102(b) of the 1976 Act.

Almost a century later, Congress revamped the

Copyright Act in 1976. By then, software for

computers was just emerging as a copyright issue.

Congress decided in the 1976 Act that computer

programs would be copyrightable as “literary works.”

See H.R. REP. NO. 94-1476, at 54 (1976). There was,

however, no express definition of a computer program

until an amendment in 1980.

The 1976 Act also codified a Baker-like limitation

on the scope of copyright protection in Section 102(b).

See Apple Computer, Inc. v. Microsoft Corp., 35 F.3d

1435, 1443 n.11 (9th Cir. 1994). Section 102(b) stated

(and still states):

In no case does copyright protection for an

original work of authorship extend to any

idea, procedure, process, system, method of

operation, concept, principle, or discovery,

regardless of the form in which it is

App-125

described, explained, illustrated, or

embodied in such work.

The House Report that accompanied Section 102(b) of

the Copyright Act explained:

Copyright does not preclude others from

using the ideas or information revealed by

the author’s work. It pertains to the literary,

musical, graphic, or artistic form in which

the author expressed intellectual concepts.

Section 102(b) makes clear that copyright

protection does not extend to any idea,

procedure, process, system, method of

operation, concept, principle, or discovery,

regardless of the form in which it is

described, explained, illustrated, or

embodied in such work.

Some concern has been expressed lest

copyright in computer programs should

extend protection to the methodology or

processes adopted by the programmer, rather

than merely to the ‘writing’ expressing his

ideas. Section 102(b) is intended, among

other things, to make clear that the

expression adopted by the programmer is the

copyrightable element in a computer

program, and that the actual processes or

methods embodied in the program are not

within the scope of the copyright law.

Section 102(b) in no way enlarges or

contracts the scope of copyright protection

under the present law. Its purpose is to

restate, in the context of the new single

App-126

Federal system of copyright, that the basic

dichotomy between expression and idea

remains unchanged.

H.R. REP. NO. 94-1476, at 56–57 (1976) (emphasis

added).5

Recognizing that computer programs posed novel

copyright issues, Congress established the National

Commission on New Technological Uses of

Copyrighted Works (referred to as CONTU) to

recommend the extent of copyright protection for

software. The Commission consisted of twelve

members with Judge Stanley Fuld as chairman and

Professor Melville Nimmer as vice-chairman.

The Commission recommended that a definition

of “computer program” be added to the copyright

statutes. This definition was adopted in 1980 and

remains in the current statute:

A “computer program” is a set of statements

or instructions to be used directly or

indirectly in a computer in order to bring

about a certain result.

17 U.S.C. 101. Moreover, the CONTU report stated

that Section 102(b)’s preclusion of copyright

protection for “procedure, process, system, method of

operation” was reconcilable with the new definition of

“computer program.” The Commission explained the

5 The Court has reviewed the entire legislative history. The

quoted material above is the only passage of relevance. This

order includes a summary of the CONTU report but it came

after-the-fact and had little impact on the Act other than to

include a definition of “computer program.”

App-127

dichotomy between copyrightability and non-

copyrightability as follows:

Copyright, therefore, protects the program

so long as it remains fixed in a tangible

medium of expression but does not protect

the electromechanical functioning of a

machine. The way copyright affects games

and game-playing is closely analogous: one

may not adopt and republish or redistribute

copyrighted game rules, but the copyright

owner has no power to prevent others from

playing the game.

Thus, one is always free to make a machine

perform any conceivable process (in the

absence of a patent), but one is not free to

take another’s program.

NAT’L COMM’N ON NEW TECHNOLOGICAL USES OF

COPYRIGHTED WORKS, FINAL REPORT 20 (1979)

(emphasis added). The Commission also recognized

the “merger” doctrine, a rule of importance a few

pages below in this order (emphasis added):

The “idea-expression identity” exception

provides that copyrighted language may be

copied without infringing when there is but

a limited number of ways to express a given

idea. This rule is the logical extension of the

fundamental principle that copyright cannot

protect ideas. In the computer context this

means that when specific instructions, even

though previously copyrighted, are the only

and essential means of accomplishing a given

task, their later use by another will not

App-128

amount to an infringement [C]opyright

protection for programs does not threaten to

block the use of ideas or program language

previously developed by others when that

use is necessary to achieve a certain result.

When other language is available,

programmers are free to read copyrighted

programs and use the ideas embodied in

them in preparing their own works.

Ibid. The Commission realized that differentiating

between the copyrightable form of a program and the

uncopyrightable process was difficult, and expressly

decided to leave the line drawing to federal courts:

[T]he many ways in which programs are now

used and the new applications which

advancing technology will supply may make

drawing the line of demarcation more and

more difficult. To attempt to establish such a

line in this report written in 1978 would be

futile. . . . Should a line need to be drawn to

exclude certain manifestations of programs

from copyright, that line should be drawn on

a case-by-case basis by the institution

designed to make fine distinctions — the

federal judiciary.

Id. at 22–23.

Congress prepared no legislative reports

discussing the CONTU comments regarding Section

102(b). See H.R. REP. NO. 96-1307, at 23–24 (1980).

Nevertheless, Congress followed CONTU’s

recommendations by adding the definition of

computer programs to the statute and amending a

App-129

section of the Act not relevant to this order. See Apple

Computer, Inc. v. Formula Intern. Inc., 725 F.2d 521,

522–25 (9th Cir. 1984). Everyone agrees that no one

can copy line-for-line someone else’s copyrighted

computer program. When the line-by-line listings are

different, however, some copyright owners have

nonetheless accused others of stealing the “structure,

sequence and organization” of the copyrighted work.

That is the claim here.

C. Decisions Outside the Ninth Circuit.

No court of appeals has addressed the

copyrightability of APIs, much less their structure,

sequence and organization. Nor has any district

court. Nevertheless, a review of the case law

regarding non-literal copying of software provides

guidance. Circuit decisions outside the Ninth Circuit

will be considered first.

The Third Circuit led off in Whelan Associates,

Inc. v. Jaslow Dental Laboratory, Inc., 797 F.2d 1222

(3d Cir. 1986). In that case, the claimant owned a

program, Dentalab, that handled the administrative

and bookkeeping tasks of dental prosthetics

businesses. The accused infringer developed another

program, Dentcom, using a different programming

language. The Dentcom program handled the same

tasks as the Dentalab program and had the following

similarities:

The programs were similar in three

significant respects . . . most of the file

structures, and the screen outputs, of the

programs were virtually identical . . . five

particularly important “subroutines” within

App-130

both programs — order entry, invoicing,

accounts receivable, end of day procedure,

and end of month procedure — performed

almost identically in both programs.

Id. at 1228. On these facts, the district court had

found, after a bench trial, that the accused infringer

copied the claimant’s software program. Id. at 1228–

29.

On appeal, the accused infringer argued that the

structure of the claimant’s program was not

protectable under copyright. In rejecting this

argument, the court of appeals created the following

framework to deal with non-literal copying of

software:

[T]he line between idea and expression may

be drawn with reference to the end sought to

be achieved by the work in question. In other

words, the purpose or function of a

utilitarian work would be the work’s idea,

and everything that is not necessary to that

purpose or function would be part of the

expression of the idea.

Id. at 1236 (emphasis in original). Applying this test,

Whelan found that the structure of Dentalab was

copyrightable because there were many different

ways to structure a program that managed a dental

laboratory:

[T]he idea of the Dentalab program was the

efficient management of a dental laboratory

(which presumably has significantly

different requirements from those of other

businesses). Because that idea could be

App-131

accomplished in a number of different ways

with a number of different structures, the

structure of the Dentalab program is part of

the program’s expression, not its idea.

Id. at 1236 n.28. The phrase “structure, sequence and

organization” originated in a passage in Whelan

explaining that the opinion used those words

interchangeably and that, although not themselves

part of the Act, they were intended to capture the

thought that “sequence and order could be parts of

the expression, not the idea, of a work.” Id. at 1239,

1248.

To summarize, in affirming the district court’s

final judgment of infringement, Whelan held that the

structure of the Dentalab program was copyrightable

because there were many other ways to perform the

same function of handling the administrative and

bookkeeping tasks of dental prosthetics businesses

with different structures and designs. Id. at 1238.

Others were free to come up with their own version

but could not appropriate the Dentalab structure.

This decision plainly seems to have been the high-

water mark of copyright protection for the structure,

sequence and organization of computer programs. It

was also the only appellate decision found by the

undersigned judge that affirmed (or directed) a final

judgment of copyrightability on a structure, sequence

and organization theory.

Perhaps because it was the first appellate

decision to wade into this problem, Whelan has since

been criticized by subsequent treatises, articles, and

courts, including our own court of appeals. See Sega

Enters., Ltd. v. Accolade, Inc., 977 F.2d 1510, 1524–

App-132

25 (9th Cir. 1992). Instead, most circuits, including

ours, have adopted some variation of an approach

taken later by the Second Circuit. See Apple

Computer, Inc. v. Microsoft Corp., 35 F.3d 1435, 1445

(9th Cir. 1994).

In Computer Associates International, Inc. v.

Altai, 982 F.2d 693 (2d Cir. 1992), the claimant

owned a program designed to translate the language

of another program into the particular language that

the computer’s operating system would be able to

understand. The accused infringer developed its own

program with substantially similar structure but

different source code (using the same programming

language). The Second Circuit criticized Whelan for

taking too narrow a view of the “idea” of a program.

The Second Circuit adopted instead an “abstract-

filtration-comparison” test. The test first dissected

the copyrighted program into its structural

components:

In ascertaining substantial similarity under

[the abstract-filtration-comparison test], a

court would first break down the allegedly

infringed program into its constituent

structural parts. Then, by examining each of

these parts for such things as incorporated

ideas, expression that is necessarily

incidental to those ideas, and elements that

are taken from the public domain, a court

would then be able to sift out all non-

protectable material.

Id. at 706.

App-133

Then, the test filtered out structures that were

not copyrightable. For this filtration step, the court of

appeals relied on the premise that programmers

fashioned structures “to maximize the program’s

speed, efficiency, as well as simplicity for user

operation, while taking into consideration certain

externalities such as the memory constraints of the

computer upon which the program will be run.” Id. at

698. Because these were “practical considerations,”

the court held that structures based on these

considerations were not copyrightable expressions.

Thus, for the filtration step, the court of appeals

outlined three types of structures that should be

precluded from copyright protection. First, copyright

protection did not extend to structures dictated by

efficiency. A court must inquire

whether the use of this particular set of

modules [is] necessary efficiently to

implement that part of the program’s

process being implemented. If the answer is

yes, then the expression represented by the

programmer’s choice of a specific module or

group of modules has merged with their

underlying idea and is unprotected.

Id. at 708 (emphasis in original). Paradoxically, this

meant that non-efficient structures might be

copyrightable while efficient structures may not be.

Nevertheless, the Second Circuit explained its

reasoning as follows:

In the context of computer program design,

the concept of efficiency is akin to deriving

the most concise logical proof or formulating

App-134

the most succinct mathematical

computation. Thus, the more efficient a set

of modules are, the more closely they

approximate the idea or process embodied in

that particular aspect of the program’s

structure

While, hypothetically, there might be a

myriad of ways in which a programmer may

effectuate certain functions within a

program — i.e., express the idea embodied in

a given subroutine — efficiency concerns

may so narrow the practical range of choice

as to make only one or two forms of

expression workable options.

Ibid. Efficiency also encompassed user simplicity and

ease of use. Id. at 708–09.

Second, copyright protection did not extend to

structures dictated by external factors. The court

explained this as follows:

[I]n many instances it is virtually impossible

to write a program to perform particular

functions in a specific computing

environment without employing standard

techniques. This is a result of the fact that a

programmer’s freedom of design choice is

often circumscribed by extrinsic

considerations such as (1) the mechanical

specifications of the computer on which a

particular program is intended to run;

(2) compatibility requirements of other

programs with which a program is designed

to operate in conjunction; (3) computer

App-135

manufacturers’ design standards;

(4) demands of the industry being serviced;

and (5) widely accepted programming

practices within the computer industry.

Id. at 709–10.

Third, copyright protection did not extend to

structures already found in the public domain. The

court reasoned that materials in the public domain,

such as elements of a computer program that have

been freely accessible, cannot be appropriated. Ibid.

Ultimately, in the case before it, the Second Circuit

held that after removing unprotectable elements

using the criteria discussed above, only a few lists

and macros in accused product were similar to the

copied product, and their impact on the program was

not large enough to declare copyright infringement.

Id. at 714–15. The copyright claim, in short, failed.

The Tenth Circuit elaborated on the abstract-

filtration-comparison test in Gates Rubber Co. v.

Bando Chemical Industries, Ltd., 9 F.3d 823 (10th

Cir. 1993). There, the claimant developed a computer

program that determined the proper rubber belt for a

particular machine by performing complicated

calculations involving numerous variables. The

program used published formulas in conjunction with

certain mathematical constants developed by the

claimant to determine belt size. The Tenth Circuit

offered the following description of a software

program’s structure:

The program’s architecture or structure is a

description of how the program operates in

terms of its various functions, which are

App-136

performed by discrete modules, and how

each of these modules interact with each

other.

Id. at 835. As had the Second Circuit, the Tenth

Circuit held that filtration should eliminate the

unprotectable elements of processes, facts, public

domain information, merger material, scenes a faire

material, and other unprotectable elements

suggested by the particular facts of the program

under examination. For Section 102(b) processes, the

court gave the following description:

Returning then to our levels of abstraction

framework, we note that processes can be

found at any level, except perhaps the main

purpose level of abstraction. Most commonly,

processes will be found as part of the system

architecture, as operations within modules,

or as algorithms.

Id. at 837. The court described the scenes a faire

doctrine for computer programs as follows:

The scenes a faire doctrine also excludes

from protection those elements of a program

that have been dictated by external factors.

In the area of computer programs these

external factors may include: hardware

standards and mechanical specifications,

software standards and compatibility

requirements, Sega Enterprises Ltd. v.

Accolade, Inc., 977 F.2d 1510, 1525–27 (9th

Cir. 1993), computer manufacturer design

standards, target industry practices and

App-137

demands, and computer industry

programming practices.

* * *

We recognize that the scenes a faire doctrine

may implicate the protectability of

interfacing and that this topic is very

sensitive and has the potential to effect [sic]

widely the law of computer copyright. This

appeal does not require us to determine the

scope of the scenes a faire doctrine as it

relates to interfacing and accordingly we

refrain from discussing the issue.

Id. at 838 & n.14 (all citations omitted except Sega).

Like the Second Circuit, the Tenth Circuit also listed

many external considerations — such as

compatibility, computer industry programming

practices, and target industry practices and demands

— that would exclude elements from copyright

protection under the scenes a faire doctrine.

Ultimately, the Tenth Circuit remanded because the

district court had failed to make specific findings that

fit this framework.

The First Circuit weighed in with its 1995

decision Lotus Development Corp. v. Borland

International, Inc., 49 F.3d 807 (1st Cir. 1995). In

Lotus, the claimant owned the Lotus 1-2-3

spreadsheet program that enabled users to perform

accounting functions electronically on a computer.

Users manipulated and controlled the program via a

series of menu commands, such as “Copy,” “Print,”

and “Quit.” In all, Lotus 1-2-3 had 469 commands

arranged into more than 50 menus and submenus.

App-138

Lotus 1-2-3 also allowed users to write “macros,”

whereby a user could designate a series of command

choices (sequence of menus and submenus) with a

single macro keystroke. Then, to execute that series

of commands, the user only needed to type the single

pre-programmed macro keystroke, causing the

program to recall and perform the designated series

of commands automatically. Id. at 809–10.

The accused infringer Borland developed a

competing spreadsheet program. Borland included

the Lotus menu command hierarchy in its program to

make it compatible with Lotus 1-2-3 so that

spreadsheet users who were already familiar with

Lotus 1-2-3 would be able to switch to the Borland

program without having to learn new commands or

rewrite their Lotus macros. In so doing, Borland did

not copy any of Lotus’s underlying source or object

code. (The opinion did not say whether the programs

were written in the same language.)

The district court had ruled that the Lotus 1-2-3

menu command hierarchy was a copyrightable

expression because there were many ways to

construct a spreadsheet menu tree. Thus, the district

court had concluded that the Lotus developers’ choice

and arrangement of command terms, reflected in the

Lotus menu command hierarchy, constituted

copyrightable expression. Id. at 810–11.

The First Circuit, however, held that the Lotus

menu command hierarchy was not copyrightable

because it was a method of operation under Section

102(b). The court explained:

App-139

We think that “method of operation,” as that

term is used in § 102(b), refers to the means

by which a person operates something,

whether it be a car, a food processor, or a

computer. Thus a text describing how to

operate something would not extend

copyright protection to the method of

operation itself; other people would be free to

employ that method and to describe it in

their own words. Similarly, if a new method

of operation is used rather than described,

other people would still be free to employ or

describe that method.

Id. at 815.

The court reasoned that because the menu

command hierarchy was essential to make use of the

program’s functional capabilities, it should be

properly categorized as a “method of operation”

under Section 102(b). The court explained:

The Lotus menu command hierarchy does

not merely explain and present Lotus 1-2-3’s

functional capabilities to the user; it also

serves as the method by which the program

is operated and controlled In other

words, to offer the same capabilities as Lotus

1-2-3, Borland did not have to copy Lotus’s

underlying code (and indeed it did not); to

allow users to operate its programs in

substantially the same way, however,

Borland had to copy the Lotus menu

command hierarchy. Thus the Lotus 1-2-3

code is not a uncopyrightable “method of

operation.”

App-140

Ibid. Thus, the court reasoned that although Lotus

had made “expressive” choices of what to name the

command terms and how to structure their

hierarchy, it was nevertheless an uncopyrightable

“method of operation.” The Lotus decision was

affirmed by an evenly divided Supreme Court (four to

four).

The Federal Circuit had the opportunity to apply

Lotus in an appeal originating from the District of

Massachusetts in Hutchins v. Zoll Medical Corp., 492

F.3d 1377 (Fed. Cir. 2007) (affirming summary

judgment against copyright owner). In Hutchins, the

claimant owned a program for performing CPR and

argued that his copyright covered the “system of logic

whereby CPR instructions are provided by

computerized display, and [] the unique logic

contained in [his] software program.” Id. at 1384. The

claimant argued that the accused program was

similar because it “perform[ed] the same task in the

same way, that is, by measuring heart activity and

signaling the quantity and timing of CPR

compressions to be performed by the rescuer.” Ibid.

The court of appeals rejected this argument, holding

that copyright did not protect the “technologic

method of treating victims by using CPR and

instructing how to use CPR.” Ibid. (citing Lotus).

D. Decisions in the Supreme Court and

in our Circuit.

Our case is governed by the law in the Ninth

Circuit and, of course, the Supreme Court. The

Supreme Court missed the opportunity to address

these issues in Lotus due to the four-to-four

affirmance and has, thus, never reached the general

App-141

question. Nonetheless, Baker, which is still good law,

provides guidance and informs how we should read

Section 102(b).

Another Supreme Court decision, Feist

Publications, Inc. v. Rural Telephone Services Co.,

Inc., 499 U.S. 340 (1991), which dealt primarily with

the copyrightability of purely factual compilations,

provided some general principles. In Feist, the

Supreme Court considered the copyrightability of a

telephone directory comprised of names, addresses,

and phone numbers organized in alphabetical order.

The Supreme Court rejected the notion that

copyright law was meant to reward authors for the

“sweat of the brow.” This meant that we should not

yield to the temptation to award copyright protection

merely because a lot of sweat went into the work. The

Supreme Court concluded that protection only

extended to the original components of an author’s

work. Id. at 353. The Supreme Court concluded:

This inevitably means that the copyright in

a factual compilation is thin.

Notwithstanding a valid copyright, a

subsequent compiler remains free to use the

facts contained in another’s publication to

aid in preparing a competing work, so long

as the competing work does not feature the

same selection and arrangement.

Id. at 349.

Turning to our own Ninth Circuit, our court of

appeals has recognized that non-literal components

of a program, including the structure, sequence and

organization and user interface, can be protectable

App-142

under copyright depending on whether the structure,

sequence and organization in question qualifies as an

expression of an idea rather than an idea itself.

Johnson Controls, Inc. v. Phoenix Control Sys., Inc.,

886 F.2d 1173, 1175 (9th Cir. 1989). This decision

arrived between the Third Circuit’s Whelan decision

and the Second Circuit’s Computer Associates

decision. Johnson Controls is one of Oracle’s

mainstays herein.

In Johnson Controls, the claimant developed a

system of computer programs to control wastewater

treatment plants. The district court found that the

structure, sequence and organization of the program

was expression and granted a preliminary injunction

even though the accused product did not have similar

source or object code. Id. at 1174. Therefore, the

standard of review on appeal was limited to abuse of

discretion and clear error. Our court of appeals

affirmed the preliminary injunction, stating that the

claimant’s program was very sophisticated and each

individual application was customized to the needs of

the purchaser, indicating there may have been room

for individualized expression in the accomplishment

of common functions. Since there was some discretion

and opportunity for creativity in the structure, the

structure of the program was expression rather than

an idea. Id. at 1175. Johnson Controls, however, did

not elaborate on which particular structures

deserved copyright protection.

In Brown Bag Software v. Symantec Corp., 960

F.2d 1465 (9th Cir. 1992), our court of appeals

outlined a two-part test for determining similarity

between computer programs: the extrinsic and

App-143

intrinsic tests. This pertained to infringement, not

copyrightability. The claimant, who owned a

computer program for outlining, alleged that an

accused infringer copied his program’s non-literal

features. Id. at 1472. The claimant alleged that

seventeen specific features in the programs were

similar. On summary judgment, the district court

had found that each feature was either not

protectable or not similar as a matter of law:

The district court ruled that one group of

features represented a claim of copyright in

“concepts . . . fundamental to a host of

computer programs” such as “the need to

access existing files, edit the work, and print

the work.” As such, these features, which

took the form of four options in the

programs’ opening menus, were held to be

unprotectable under copyright.

A second group of features involved “nine

functions listed in the menu bar” and the

fact that “virtually all of the functions of the

PC-Outline program [] can be performed by

Grandview.” The district court declared that

“these functions constitute the idea of the

outlining program” and, furthermore, “[t]he

expression of the ideas inherent in the

features are . . . distinct.” The court also held

that “the similarity of using the main editing

screen to enter and edit data . . . is essential

to the very idea of a computer outlining

program.”

The third group of features common to PC-

Outline and Grandview concerned “the use

App-144

of pull-down windows.” Regarding these

features, the district court made three

separate rulings. The court first found that

“[p]laintiffs may not claim copyright

protection of an . . . expression that is, if not

standard, then commonplace in the

computer software industry” [and] that

the pull-down windows of the two programs

look different.

Id. at 1472–73. Our court of appeals affirmed the

district court’s order without elaborating on the

copyrightability rulings quoted above.

In Atari Games Corp. v. Nintendo of America

Inc., 975 F.2d 832 (Fed. Cir. 1992), the Federal

Circuit had occasion to interpret Ninth Circuit

copyright precedent. In Atari, the claimant Nintendo

sued Atari for copying the Nintendo 10NES program,

which prevented the Nintendo game console from

accepting unauthorized game cartridges. Atari

deciphered the 10NES program through reverse

engineering and developed its own program to unlock

the Nintendo game console. Atari’s new program

generated signals indistinguishable from 10NES but

was written in a different programming language. Id.

at 835–36.

Applying our Ninth Circuit precedents, Johnson

Controls and Brown Bag, the Federal Circuit

affirmed the district court’s preliminary injunction

for copyright infringement. The Federal Circuit held

that the 10NES program contained copyrightable

expression because it had organization and

sequencing unnecessary to the unlocking function:

App-145

Nintendo’s 10NES program contains more

than an idea or expression necessarily

incident to an idea. Nintendo incorporated

within the 10NES program creative

organization and sequencing unnecessary to

the lock and key function. Nintendo chose

arbitrary programming instructions and

arranged them in a unique sequence to

create a purely arbitrary data stream. This

data stream serves as the key to unlock the

NES. Nintendo may protect this creative

element of the 10NES under copyright.

Id. at 840 (emphasis added). The Federal Circuit

stated that there were creative elements in the

10NES program

beyond the literal expression used to effect

the unlocking process. The district court

defined the unprotectable 10NES idea or

process as the generation of a data stream to

unlock a console. This court discerns no clear

error in the district court’s conclusion. The

unique arrangement of computer program

expression which generates that data stream

does not merge with the process so long as

alternate expressions are available. In this

case, Nintendo has produced expert

testimony showing a multitude of different

ways to generate a data stream which

unlocks the NES console.

Ibid. (citation omitted). Thus, the Federal Circuit

held that the district court did not err in concluding

that the 10NES program contained protectable

expression and affirmed the preliminary injunction.

App-146

Next came two decisions holding that Section

102(b) bars from copyright software interfaces

necessary for interoperability. The Section 102(b)

holdings arose in the context of larger holdings that

it had been fair use to copy software to reverse-

engineer it so as to isolate the unprotectable

segments. These two decisions will now be described

in detail.

In Sega Enterprises Ltd. v. Accolade, Inc., 977

F.2d 1510 (9th Cir. 1992), the accused infringer had

to copy object code in order to understand the

interface procedures between the Sega game console

and a game cartridge, that is, how the software in the

game console interacted with the software in the

game cartridge to achieve compatibility. Id. at 1515–

16. After learning and documenting these

interactions (interface procedures), the accused

infringer wrote its own source code to mimic those

same interface procedures in its own game cartridges

so that its cartridges could run on the Sega console.

Our court of appeals held that the copying of object

code for the purpose of achieving compatibility was

fair use. Notably, in its fair-use analysis, our court of

appeals expressly held that the interface procedures

for compatibility were functional aspects not

copyrightable under Section 102(b): “Accolade copied

Sega’s software solely in order to discover the

functional requirements for compatibility with the

Genesis console — aspects of Sega’s programs that

are not protected by copyright. 17 U.S.C. § 102(b).”

Id. at 1522. The court used the phrase “interface

procedures,” a term describing the interface between

applications, multiple times to describe the

functional aspect of the interaction between software

App-147

programs and summarized its analysis of

copyrightability as follows:

In summary, the record clearly establishes

that disassembly of the object code in Sega’s

video game cartridges was necessary in

order to understand the functional

requirements for Genesis compatibility. The

interface procedures for the Genesis console

are distributed for public use only in object

code form, and are not visible to the user

during operation of the video game program.

Because object code cannot be read by

humans, it must be disassembled, either by

hand or by machine. Disassembly of object

code necessarily entails copying. Those facts

dictate our analysis of the second statutory

fair use factor. If disassembly of copyrighted

object code is per se an unfair use, the owner

of the copyright gains a de facto monopoly

over the functional aspects of his work —

aspects that were expressly denied copyright

protection by Congress. 17 U.S.C. § 102(b). In

order to enjoy a lawful monopoly over the

idea or functional principle underlying a

work, the creator of the work must satisfy

the more stringent standards imposed by the

patent laws. Bonito Boats, Inc. v. Thunder

Craft Boats, Inc., 489 U.S. 141, 159–64, 109

S.Ct. 971, 982–84, 103 L.Ed.2d 118 (1989).

Sega does not hold a patent on the Genesis

console.

Sega, 977 F.2d at 1526 (emphasis added). In Sega,

the interface procedure that was required for

App-148

compatibility was “20 bytes of initialization code plus

the letters S–E–G–A.” Id. at 1524 n.7. Our court of

appeals found that this interface procedure was

functional and therefore not copyrightable under

Section 102(b). The accused infringer Accolade was

free to copy this interface procedure for use in its own

games to ensure compatibility with the Sega Genesis

game console. Our court of appeals distinguished the

Atari decision, where the Federal Circuit had found

that the Nintendo’s 10NES security system was

infringed, because there was only one signal that

unlocked the Sega console, unlike the “multitude of

different ways to unlock” the Nintendo console:

We therefore reject Sega’s belated suggestion

that Accolade’s incorporation of the code

which “unlocks” the Genesis III console is

not a fair use. Our decision on this point is

entirely consistent with Atari v. Nintendo,

975 F.2d 832 (Fed. Cir. 1992). Although

Nintendo extended copyright protection to

Nintendo’s 10NES security system, that

system consisted of an original program

which generates an arbitrary data stream

“key” which unlocks the NES console.

Creativity and originality went into the

design of that program. See id. at 840.

Moreover, the federal circuit concluded that

there is a “multitude of different ways to

generate a data stream which unlocks the

NES console.” Atari, 975 F.2d at 839. The

circumstances are clearly different here.

Sega’s key appears to be functional. It

consists merely of 20 bytes of initialization

code plus the letters S–E–G–A. There is no

App-149

showing that there is a multitude of

different ways to unlock the Genesis III

Sega, 977 F.2d at 1524 n.7.

This order reads Sega footnote seven (quoted

above) as drawing a line between copying functional

aspects necessary for compatibility (not

copyrightable) versus copying functional aspects

unnecessary for compatibility (possibly

copyrightable). Our court of appeals explained that in

Atari, the Nintendo game console’s 10NES program

had had functionality unnecessary to the lock-and-

key function. See also Atari, 975 F.2d at 840. Since

the accused infringer Atari had copied the entire

10NES program, it also had copied aspects of the

10NES program unnecessary for compatibility

between the console and game cartridges. This was

inapposite to the facts of Sega, where the accused

infringer Accolade’s final product duplicated only the

aspect of Sega’s program necessary for compatibility

between the console and game cartridges. Thus, the

holding of our court of appeals was that the aspect of

a program necessary for compatibility was

unprotectable, specifically invoking Section 102(b),

but copyrightable expression could still exist for

aspects unnecessary for compatibility.

The Sega decision and its compatibility

reasoning was followed in a subsequent reverse-

engineering decision by our court of appeals, Sony

Computer Entertainment, Inc., v. Connectix

Corporation, 203 F.3d 596 (9th Cir. 2000). The facts

were somewhat different in Sony. There, the accused

infringer Connectix did not create its own games for

Sony’s Playstation game console; instead, the accused

App-150

infringer created an emulated environment that

duplicated the interface procedures of Sony’s console

so that games written for Sony’s console could be

played on a desktop computer running the emulator.

In order to do this, the accused infringer copied object

code for the Sony Playstation’s operating software, its

BIOS program, in order to discover signals sent

between the BIOS and the rest of the game console.

Id. at 600. After uncovering these signals (again,

application interfaces), the accused infringer wrote

its own source code to duplicate these interfaces in

order to create its emulator for the desktop computer.

Thus, games written for the Playstation console were

playable on Connectix’s emulator for the desktop

computer. Citing Section 102(b) and Sega, our court

of appeals stated that the Playstation BIOS

contained “unprotected functional elements,” and

concluded that the accused infringer’s intermediate

step of copying object code was fair use because it

was done for the “purpose of gaining access to the

unprotected elements of Sony’s software.” Id. at 602–

03.6

* * *

With apology for its length, the above summary

of the development of the law reveals a trajectory in

6 Sega and Sony are not the only Ninth Circuit decisions placing

a premium on functionality as indicating uncopyrightability.

Other such decisions were surveyed in the summary earlier in

this order. See also Triad Sys. Corp. v. Southeastern Exp. Co.,

64 F.3d 1330, 1336 (9th Cir. 1995); Apple Computer, Inc. v.

Microsoft Corp., 35 F.3d 1435, 1444 (9th Cir. 1994); Apple

Computer, Inc. v. Formula Intern., Inc., 725 F.2d 521, 525 (9th

Cir. 1984).

App-151

which enthusiasm for protection of “structure,

sequence and organization” peaked in the 1980s,

most notably in the Third Circuit’s Whelan decision.

That phrase has not been re-used by the Ninth

Circuit since Johnson Controls in 1989, a decision

affirming preliminary injunction. Since then, the

trend of the copyright decisions has been more

cautious. This trend has been driven by fidelity to

Section 102(b) and recognition of the danger of

conferring a monopoly by copyright over what

Congress expressly warned should be conferred only

by patent. This is not to say that infringement of the

structure, sequence and organization is a dead letter.

To the contrary, it is not a dead letter. It is to say

that the Whelan approach has given way to the

Computer Associates approach, including in our own

circuit. See Sega Enters., Ltd. v. Accolade, Inc., 977

F.2d 1510, 1525 (9th Cir. 1992); Apple Computer, Inc.

v. Microsoft Corp., 35 F.3d 1435, 1445 (9th Cir. 1994).

In this connection, since the CONTU report was

issued in 1980, the number of software patents in

force in the United States has dramatically increased

from barely a thousand in 1980 to hundreds of

thousands today. See Iain Cockburn, Patents, Tickets

and the Financing of Early-Stage Firms: Evidence

from the Software Industry, 18 JOURNAL OF

ECONOMICS & MANAGEMENT STRATEGY 729–73 (2009).

This has caused at least one noted commentator to

observe:

As software patents gain increasingly broad

protection, whatever reasons there once

were for broad copyright protection of

computer programs disappear. Much of what

App-152

has been considered the copyrightable

“structure, sequence and organization” of a

computer program will become a mere

incident to the patentable idea of the

program or of one of its potentially

patentable subroutines.

Mark Lemley, Convergence in the Law of

Software Copyright?, 10 HIGH TECHNOLOGY LAW

JOURNAL 1, 26–27 (1995). Both Oracle and Sun have

applied for and received patents that claim aspects of

the Java API. See, e.g., U.S. Patents 6,598,093 and

7,006,855. (These were not asserted at trial.)7

* * *

In view of the foregoing, this order concludes

that our immediate case is controlled by these

principles of copyright law:

7 The issue has been debated in the journals. For example,

Professor Pamela Samuelson has argued that Section 102(b)

codified the Baker exclusion of procedures, processes, systems,

and methods of operation for computer programs as well as the

pre-Baker exclusion of high-level abstractions such as ideas,

concepts, and principles. Pamela Samuelson, Why Copyright

Law Excludes Systems and Processes from the Scope of

Protection, 85 TEX. L. REV. 1921 (2007). In contrast, Professor

David Nimmer (the son of Professor Melville Nimmer) has

argued that Section 102(b) should not deny copyright protection

to “the expression” of a work even if that work happens to

consist of an idea, procedure or process. 1-2 NIMMER ON

COPYRIGHT § 2.03[D] (internal citations omitted). Similarly,

Professor Jane Ginsburg has argued that the Section 102(b)

terms “process,” “system,” and “method of operation” should not

be understood literally for computer programs. Jane Ginsburg,

Four Reasons and a Paradox: The Manifest Superiority of

Copyright Over Sui Generis Protection of Computer Software, 94

COLUM. L. REV. 2559, 2569–70 (1994).

App-153

 Under the merger doctrine, when there is

only one (or only a few) ways to express

something, then no one can claim ownership

of such expression by copyright.

 Under the names doctrine, names and short

phrases are not copyrightable.

 Under Section 102(b), copyright protection

never extends to any idea, procedure,

process, system, method of operation or

concept regardless of its form. Functional

elements essential for interoperability are

not copyrightable.

 Under Feist, we should not yield to the

temptation to find copyrightability merely to

reward an investment made in a body of

intellectual property.

APPLICATION OF CONTROLLING

LAW TO CONTROLLING FACTS

All agree that everyone was and remains free to

program in the Java language itself. All agree that

Google was free to use the Java language to write its

own API. While Google took care to provide fresh

line-by-line implementations (the 97 percent), it

generally replicated the overall name organization

and functionality of 37 packages in the Java API (the

three percent). The main issue addressed herein is

whether this violated the Copyright Act and more

fundamentally whether the replicated elements were

copyrightable in the first place.

This leads to the first holding central to this

order and it concerns the method level. The reader

App-154

will remember that a method is like a subroutine and

over six thousand are in play in this proceeding. As

long as the specific code written to implement a

method is different, anyone is free under the

Copyright Act to write his or her own method to carry

out exactly the same function or specification of any

and all methods used in the Java API. Contrary to

Oracle, copyright law does not confer ownership over

any and all ways to implement a function or

specification, no matter how creative the copyrighted

implementation or specification may be. The Act

confers ownership only over the specific way in which

the author wrote out his version. Others are free to

write their own implementation to accomplish the

identical function, for, importantly, ideas, concepts

and functions cannot be monopolized by copyright.

To return to our example, one method in the

Java API carries out the function of comparing two

numbers and returning the greater. Google — and

everyone else in the world — was and remains free to

write its own code to carry out the identical function

so long as the implementing code in the method body

is different from the copyrighted implementation.

This is a simple example, but even if a method

resembles higher mathematics, everyone is still free

to try their hand at writing a different

implementation, meaning that they are free to use

the same inputs to derive the same outputs (while

throwing the same exceptions) so long as the

implementation in between is their own. The House

Report, quoted above, stated in 1976 that “the actual

processes or methods embodied in the program are

not within the scope of the copyright law.” H.R. REP.

NO. 94-1476, at 57 (1976).

App-155

Much of Oracle’s evidence at trial went to show

that the design of methods in an API was a creative

endeavor. Of course, that is true. Inventing a new

method to deliver a new output can be creative, even

inventive, including the choices of inputs needed and

outputs returned. The same is true for classes. But

such inventions — at the concept and functionality

level — are protectable only under the Patent Act.

The Patent and Trademark Office examines such

inventions for validity and if the patent is allowed, it

lasts for twenty years. Based on a single

implementation, Oracle would bypass this entire

patent scheme and claim ownership over any and all

ways to carry out methods for 95 years — without

any vetting by the Copyright Office of the type

required for patents. This order holds that, under the

Copyright Act, no matter how creative or imaginative

a Java method specification may be, the entire world

is entitled to use the same method specification

(inputs, outputs, parameters) so long as the line-by-

line implementations are different. To repeat the

Second Circuit’s phrasing, “there might be a myriad

of ways in which a programmer may . . . express the

idea embodied in a given subroutine.” Computer

Associates, 982 F.2d at 708. The method specification

is the idea. The method implementation is the

expression. No one may monopolize the idea.8

8 Each method has a singular purpose or function, and so, the

basic function or purpose of a method will be an unprotectable

process. Gates Rubber Co. v. Bando Chemical Industries, Ltd., 9

F.3d 823, 836 (10th Cir. 1993); see Apple Computer, Inc. v.

Formula Intern. Inc., 725 F.2d 521, 525 (9th Cir. 1984) (holding

that while a particular set of instructions is copyrightable, the

underlying computer process is not).

App-156

To carry out any given function, the method

specification as set forth in the declaration must be

identical under the Java rules (save only for the

choices of argument names). Any other declaration

would carry out some other function. The declaration

requires precision. Significantly, when there is only

one way to write something, the merger doctrine bars

anyone from claiming exclusive copyright ownership

of that expression. Therefore, there can be no

copyright violation in using the identical

declarations. Nor can there be any copyright

violation due to the name given to the method (or to

the arguments), for under the law, names and short

phrases cannot be copyrighted.

In sum, Google and the public were and remain

free to write their own implementations to carry out

exactly the same functions of all methods in question,

using exactly the same method specifications and

names. Therefore, at the method level — the level

where the heavy lifting is done — Google has violated

no copyright, it being undisputed that Google’s

implementations are different.

As for classes, the rules of the language likewise

insist on giving names to classes and the rules insist

on strict syntax and punctuation in the lines of code

that declare a class. As with methods, for any desired

functionality, the declaration line will always read

the same (otherwise the functionality would be

different) — save only for the name, which cannot be

claimed by copyright. Therefore, under the law, the

declaration line cannot be protected by copyright.

This analysis is parallel to the analysis for methods.

App-157

This now accounts for virtually all of the three

percent of similar code.

* * *

Even so, the second major copyright question is

whether Google was and remains free to group its

methods in the same way as in Java, that is, to

organize its Android methods under the same class

and package scheme as in Java. For example, the

Math classes in both systems have a method that

returns a cosine, another method that returns the

larger of two numbers, and yet another method that

returns logarithmic values, and so on. As Oracle

notes, the rules of Java did not insist that these

methods be grouped together in any particular class.

Google could have placed its trigonometric function

(or any other function) under a class other than Math

class. Oracle is entirely correct that the rules of the

Java language did not require that the same

grouping pattern (or even that they be grouped at all,

for each method could have been placed in a stand-

alone class).9

9 As to the groupings of methods within a class, Google invokes

the scenes a faire doctrine. That is, Google contends that the

groupings would be so expected and customary as to be

permissible under the scenes a faire doctrine. For example, the

methods included under the Math class are typical of what one

would expect to see in a group of math methods. Just as one

would expect certain items in the alcove for nuts, bolts and

screws in a hardware store, one would expect the methods of the

math class to be in, say, a typical math class. At trial, however,

neither side presented evidence from which we can now say that

the same is true for all the other hundreds of classes at issue.

Therefore, it is impossible to say on this record that all of the

classes and their contents are typical of such classes and, on

App-158

Oracle’s best argument, therefore, is that while

no single name is copyrightable, Java’s overall

system of organized names — covering 37 packages,

with over six hundred classes, with over six thousand

methods — is a “taxonomy” and, therefore,

copyrightable under American Dental Association v.

Delta Dental Plans Association, 126 F.3d 977 (7th

Cir. 1997). There was nothing in the rules of the Java

language that required that Google replicate the

same groupings even if Google was free to replicate

the same functionality.10

The main answer to this argument is that while

the overall scheme of file name organization

resembles a taxonomy, it is also a command

structure for a system or method of operation of the

application programming interface. The commands

are (and must be) in the form

java.package.Class.method()

this record, this order rejects Google’s global argument based on

scenes a faire.

10 This is a good place to point out that while the groupings

appear to be the same, when we drill down into the detail code

listings, we see that the actual sequences of methods in the

listings are different. That is, the sequence of methods in the

class Math in Android is different from the sequence in the

same class in Java, although all of the methods in the Java

version can be found somewhere in the Android version, at least

as shown in their respective listings (TX 47.101, TX 623.101).

The Court has not compared all six-hundred-plus classes. Nor

has any witness or counsel so far on the record. Oracle does not,

however, contend that the actual sequences would track

method-for-method and it has not so proven. This detailed

observation, however, does not change the fact that all of the

methods in the Java version can be found somewhere in the

Android version, classified under the same classes.

App-159

and each calls into action a pre-assigned function.11

To repeat, Section 102(b) states that “in no case

does copyright protection for an original

work of authorship extend to any idea,

procedure, process, system, method of operation . . .

regardless of the form” That a system or method

of operation has thousands of commands arranged in

a creative taxonomy does not change its character as

a method of operation. Yes, it is creative. Yes, it is

original. Yes, it resembles a taxonomy. But it is

nevertheless a command structure, a system or

method of operation — a long hierarchy of over six

thousand commands to carry out pre-assigned

functions. For that reason, it cannot receive copyright

protection — patent protection perhaps — but not

copyright protection.

* * *

Interoperability sheds further light on the

character of the command structure as a system or

method of operation. Surely, millions of lines of code

had been written in Java before Android arrived.

These programs necessarily used the

java.package.Class.method() command format. These

programs called on all or some of the specific 37

packages at issue and necessarily used the command

structure of names at issue. Such code was owned by

the developers themselves, not by Oracle. In order for

at least some of this code to run on Android, Google

was required to provide the same

11 The parentheses indicate that inputs/arguments may be

included in the command.

App-160

java.package.Class.method() command system using

the same names with the same “taxonomy” and with

the same functional specifications. Google replicated

what was necessary to achieve a degree of

interoperability — but no more, taking care, as said

before, to provide its own implementations.

That interoperability is at the heart of the

command structure is illustrated by Oracle’s

preoccupation with what it calls “fragmentation,”

meaning the problem of having imperfect

interoperability among platforms. When this occurs,

Java-based applications may not run on the

incompatible platforms. For example, Java-based

code using the replicated parts of the 37 API

packages will run on Android but will not if a 38th

package is needed. Such imperfect interoperability

leads to a “fragmentation” — a Balkanization — of

platforms, a circumstance which Sun and Oracle

have tried to curb via their licensing programs. In

this litigation, Oracle has made much of this

problem, at times almost leaving the impression that

if only Google had replicated all 166 Java API

packages, Oracle would not have sued. While

fragmentation is a legitimate business consideration,

it begs the question whether or not a license was

required in the first place to replicate some or all of

the command structure. (This is especially so

inasmuch as Android has not carried the Java

trademark, and Google has not held out Android as

fully compatible.) The immediate point is this:

fragmentation, imperfect interoperability, and

Oracle’s angst over it illustrate the character of the

command structure as a functional system or method

of operation.

App-161

In this regard, the Ninth Circuit decisions in

Sega and Sony, although not on all fours, are close

analogies. Under these two decisions, interface

procedures required for interoperability were deemed

“functional requirements for compatibility” and were

not copyrightable under Section 102(b). Both

decisions held that interface procedures that were

necessary to duplicate in order to achieve

interoperability were functional aspects not

copyrightable under Section 102(b). Here, the

command structure for the 37 packages (including

inheritances and exception throws), when replicated,

at least allows interoperability of code using the

replicated commands. To the extent of the 37

packages — which, after all, is the extent of Oracle’s

copyright claim — Sega and Sony are analogous. Put

differently, if someone could duplicate the interfaces

of the Sony BIOS in order to run the Playstation

games on desktops (taking care to write its own

implementations), then Google was free to duplicate

the command structure for the 37 packages in

Android in order to accommodate third-party source

code relying on the 37 packages (taking care to write

its own implementations). Contrary to Oracle, “full

compatibility” is not relevant to the Section 102(b)

analysis. In Sony, the accused product implemented

only 137 of the Playstation BIOS’s 242 functions

because those were the only functions invoked by the

games tested. Connectix’s Opening Appellate Brief at

18, available at 1999 WL 33623860, (9th Cir. May 27,

1999). Our court of appeals held that the accused

product “itself infringe[d] no copyright.” Sony, 203

F.3d at 608 n.11. This parallels Google’s decision to

App-162

implement some but not all of the Java API packages

in Android.

* * *

This explains why American Dental Association

v. Delta Dental Plans Association, 126 F.3d 977 (7th

Cir. 1997), is not controlling. Assuming arguendo

that a taxonomy is protectable by copyright in our

circuit, see Practice Mgmt. Info. Corp. v. Am. Med.

Ass’n, 121 F.3d 516 (9th Cir. 1997), the taxonomy in

ADA had nothing to do with computer programs. It

was not a system of commands, much less a system of

commands for a computer language. The taxonomy

there subdivided the universe of all dental

procedures into an outline of numbered categories

with English-language descriptions created by the

ADA. This was then to be used by insurance

companies and dentists to facilitate billings. By

contrast, here the taxonomy is composed entirely of a

system of commands to carry out specified computer

functions. For a similar reason, Oracle’s analogy to

stealing the plot and character from a movie is inapt,

for movies involve no “system” or “method of

operation” — scripts are entirely creative.

In ADA, Judge Frank Easterbrook (writing for

the panel) suggested that a “system” under Section

102(b) had to come with “instructions for use.” 126

F.3d at 980. Because the taxonomy there at issue had

no instructions for use, among other reasons, it was

held not to be a system. By contrast, the API at issue

here does come with instructions for use, namely, the

documentation and embedded comments that were

much litigated at trial. They describe every package,

class and method, what inputs they need, and what

App-163

outputs they return — the classic form of

instructions for use.

In our circuit, the structure, sequence and

organization of a computer program may (or may not)

qualify as a protectable element depending on the

“particular facts of each case” and always subject to

exclusion of unprotectable elements. Johnson

Controls v. Phoenix Control Sys., 886 F.2d 1173, 1175

(9th Cir. 1989). Contrary to Oracle, Johnson Controls

did not hold that all structure, sequence and

organization in all computer programs are within the

protection of a copyright. On a motion for preliminary

injunction, the district court found that the structure,

sequence and organization of the copyrighted

program, on the facts there found, deserved copyright

protection. (The structure, sequence and organization

features found protectable were not described in the

appellate decision.) On an appeal from the

preliminary injunction, our court of appeals merely

said no clear error had occurred. Again, the appellate

opinion stated that the extent to which the structure,

sequence and organization was protectable depended

on the facts and circumstances of each case. The

circumstances there are not the circumstances here.

In closing, it is important to step back and take

in the breadth of Oracle’s claim. Of the 166 Java

packages, 129 were not violated in any way. Of the

37 accused, 97 percent of the Android lines were new

from Google and the remaining three percent were

freely replicable under the merger and names

doctrines. Oracle must resort, therefore, to claiming

that it owns, by copyright, the exclusive right to any

and all possible implementations of the taxonomy-

App-164

like command structure for the 166 packages and/or

any subpart thereof — even though it copyrighted

only one implementation. To accept Oracle’s claim

would be to allow anyone to copyright one version of

code to carry out a system of commands and thereby

bar all others from writing their own different

versions to carry out all or part of the same

commands. No holding has ever endorsed such a

sweeping proposition.

CONCLUSION

This order does not hold that Java API packages

are free for all to use without license. It does not hold

that the structure, sequence and organization of all

computer programs may be stolen. Rather, it holds

on the specific facts of this case, the particular

elements replicated by Google were free for all to use

under the Copyright Act. Therefore, Oracle’s claim

based on Google’s copying of the 37 API packages,

including their structure, sequence and organization

is DISMISSED. To the extent stated herein, Google’s

Rule 50 motions regarding copyrightability are

GRANTED (Dkt. Nos. 984, 1007). Google’s motion for a

new trial on copyright infringement is DENIED AS

MOOT (Dkt. No. 1105).

IT IS SO ORDERED.

Dated: May 31, 2012.

/s/

WILLIAM ALSUP, UNITED STATES DISTRICT JUDGE

App-165

Appendix E

IN THE UNITED STATES DISTRICT COURT FOR

THE NORTHERN DISTRICT OF CALIFORNIA

ORACLE AMERICA, INC.,

Plaintiff,

v.

GOOGLE INC.,

Defendant.

No. C 10-03561 WHA

May 31, 2012

FINDINGS OF FACT AND CONCLUSIONS OF

LAW ON EQUITABLE DEFENSES

This order addresses Google’s equitable defenses,

(1) laches; (2) equitable estoppel; (3) implied license;

and (4) waiver, for both copyright and patent

infringement. In light of the Court’s accompanying

ruling that the structure, sequence and organization

of the Java API packages are not copyrightable, and

the jury’s verdict of patent non-infringement,

Google’s equitable defenses are moot, at least

pending appeal. Nonetheless, even in the event of a

remand on one or more other liability issues, it is so

unlikely that the remand could affect the calculus of

the defenses of implied license and waiver that this

order will go ahead and clear those away, leaving

open the defenses of laches and equitable estoppel.

1. IMPLIED LICENSE.

An implied license requires a finding of an

affirmative grant of consent or permission. Though

rare, consent can be inferred from a course of conduct

between parties. Wang Labs., Inc. v. Mitsubishi

Elecs., 103 F.3d 1571, 1581–82 (Fed. Cir. 1997). As

App-166

with the other equitable defenses, there must be a

nexus between the alleged conduct giving rise to the

implied license and the infringing action. Ibid. In the

context of both copyrights and patents, circumstances

giving rise to an implied license are exceedingly

narrow. See Id. at 1251–52; A&M Records, Inc. v.

Napster, Inc., 239 F.3d 1004, 1026 (9th Cir. 2001).

The requisite nexus between Oracle and/or Sun’s

conduct and Google’s infringement has not been

proved. Google agrees that Oracle and/or Sun did not

specifically and affirmatively grant permission to

Google to use the structure, sequence and

arrangement of the 37 API packages (Dkt. No. 1079

¶ 183). The same is true for the asserted patents.

This leaves open only the “course of conduct” theory,

which also fails.

Google’s evidence of implied consent at most

establishes Oracle’s inaction. Google’s equitable

defenses rest primarily on a November 2007 blog post

by Sun’s CEO congratulating Google on the release of

Android, as well as similar positive statements by

Sun executives thereafter. Congratulatory

statements do not fall under the narrow

circumstances proscribed by our court of appeals.

Even if Google understood Oracle and/or Sun’s

conduct to condone use of the Java API packages, the

“course of conduct” must be assessed for an

affirmative grant of such consent. None is apparent

from the evidence Google presented here. Google has

supplied no relevant authority that would support a

finding in its favor on these facts. Furthermore, from

the present record it would be impossible to

determine the scope of any implied license. Under

App-167

Google’s theory, infringement is excused as to any

aspect of Android because the whole of the platform

was generally applauded by Sun. Such a finding is

not supported by precedent. The parties negotiated

for a real license but the talks collapsed and no

license was given. It would be most bizarre to

somehow find an implied license in this scenario.

2. WAIVER.

To prevail on a waiver defense, Google must

show by a preponderance of the evidence that Oracle

and/or Sun, with full knowledge of the material facts,

intentionally relinquished its rights to enforce the

rights it now asserts. Waiver of a known right must

be “manifested by some overt act indicating an

intention to abandon that right.” Micro Star v.

Formgen, Inc., 154 F.3d 1107, 1114 (9th Cir. 1998).

The parties agree that inaction alone is insufficient

to show waiver.

This order finds Google has not met its burden of

proving an overt act by Oracle and/or Sun indicating

its intention to abandon all rights to the Java

platform, or to the specific technology at issue here.

Google’s best evidence on the issue of waiver is

Jonathan Schwartz’s testimony that Sun made a

decision to not sue Google following the release of

Android. This decision, however, is not an overt act.

So long as it did not induce reliance by Google, Sun

was free to change its mind and assert its rights

within the statute of limitations period. The several

congratulatory communications do not, as discussed

above, constitute a clear indication that Oracle

and/or Sun intended to relinquish its rights as to the

entirety of its platform. Google concedes Oracle

App-168

continued and continues to assert its rights as to

other aspects of the platform such as the language

specification and code (Dkt. No. 1079 ¶¶ 58–60). Save

for a total relinquishment, Google has to prove an

overt act by Oracle and/or Sun relaying its intent to

abandon rights as to the specific elements asserted

here. The evidence is devoid of any such showing.

3. EQUITABLE ESTOPPEL AND LACHES.

There remains a possibility that these two

equitable defenses can be revived on remand. Both

these defenses are based, in part, on what

intellectual property rights Sun and Oracle had in

Java, and more specifically, rights to preventing

others from using the structure, sequence and

organization of the API packages. In the event of a

remand, this could affect the calculus involving the

defenses and the judge will reserve on deciding these

defenses. If that occurs, those issues will likely be

decided based on the existing trial record.

CONCLUSION

For the reasons stated, Google’s defenses of

implied license and waiver are rejected on the merits

and Google’s defenses of equitable estoppel and

laches are denied as moot.

IT IS SO ORDERED.

Dated: May 31, 2012.

/s/

WILLIAM ALSUP, UNITED STATES DISTRICT JUDGE

App-169

Appendix F

IN THE UNITED STATES DISTRICT COURT FOR

THE NORTHERN DISTRICT OF CALIFORNIA

ORACLE AMERICA, INC.,

Plaintiff,

v.

GOOGLE INC.,

Defendant.

No. C 10-03561 WHA

June 20, 2012

FINAL JUDGMENT

The pleadings in this action asserted the

following: Oracle asserted infringement of seven

patents, U.S. Patent Nos. 6,125,447; 6,192,476;

5,966,702; 7,426,720; RE38,104; 6,910,205; and

6,061,520. Oracle further asserted infringement of its

copyrights in the code, documentation, specifications,

libraries, and other materials that comprise the Java

platform. Oracle alleged that the infringed elements

included Java method and class names, definitions,

organization, and parameters; the structure,

organization and content of Java class libraries; and

the content and organization of Java’s

documentation. In turn, Google asserted declaratory

judgments of non-infringement and invalidity, and

equitable defenses. Before trial, Oracle dismissed

with prejudice all claims for relief based on the ’447,

’476, ’702, ’720, and ’205 patents. During trial, Google

abandoned claims for relief for invalidity declarations

as to the ’104 and ’520 patents.

Based upon the verdicts by the jury and orders

entered by the Court, it is now ORDERED,

ADJUDGED, AND DECREED that:

App-170

With respect to Oracle’s claim for relief and

Google’s counterclaim for declaratory judgment of

non-infringement for the ’520 and ’104 patents,

judgment is entered for Google and against Oracle.

With respect to Google’s counterclaims for

declaratory judgment of invalidity for the ’520 and

’104 patents, judgment is entered for Oracle and

against Google, such counterclaims having been

abandoned during trial. With respect to the five

remaining patents, claims for relief by Oracle were

completely dismissed with prejudice by Oracle (and

may not be resurrected except as indicated in the

orders of May 3, 2011, and March 2, 2012, with

respect to new products). In this regard, it is the

intent of this judgment and order that general

principles of merger of claims into the judgment and

res judicata shall be applicable.

With respect to Oracle’s claim for relief for

copyright infringement, judgment is entered in favor

of Google and against Oracle except as follows: the

rangeCheck code in TimSort.java and

ComparableTimSort.java, and the eight decompiled

files (seven “Impl.java” files and one “ACL” file), as to

which judgment for Oracle and against Google is

entered in the amount of zero dollars (as per the

parties’ stipulation).

With respect to Google’s equitable defenses,

judgment is entered for Oracle and against Google as

to waiver and implied license. As to equitable

estoppel and laches, no ruling need be made due to

mootness.

IT IS SO ORDERED.

App-171

Dated: June 20, 2012.

/s/

WILLIAM ALSUP, UNITED STATES DISTRICT JUDGE

App-172

Appendix G

IN THE UNITED STATES DISTRICT COURT FOR

THE NORTHERN DISTRICT OF CALIFORNIA

ORACLE AMERICA, INC.,

Plaintiff,

v.

GOOGLE INC.,

Defendant.

No. C 10-03561 WHA

ORDER DENYING MOTION FOR JUDGMENT

AS A MATTER OF LAW AND NEW TRIAL

Plaintiff Oracle America, Inc. moves for

judgment as a matter of law under Rule 50(b), or in

the alternative, for a new trial under Rule 59, on

issues of patent and copyright infringement. Oracle’s

arguments are repetitive of its Rule 50(a) motions

and rely on the same evidence. For reasons stated in

prior orders (Dkt. Nos. 1119, 1165, 1201, 1202, 1203,

1211), Oracle’s motion is DENIED. The hearing

scheduled for July 26 is VACATED.

IT IS SO ORDERED.

Dated: July 13, 2012.

/s/

WILLIAM ALSUP, UNITED STATES DISTRICT JUDGE

App-173

Appendix H

IN THE UNITED STATES DISTRICT COURT FOR

THE NORTHERN DISTRICT OF CALIFORNIA

ORACLE AMERICA, INC.,

Plaintiff,

v.

GOOGLE INC.,

Defendant.

No. C 10-03561 WHA

ORDER DENYING MOTION FOR JUDGMENT

AS A MATTER OF LAW AND NEW TRIAL

Defendant Google Inc. moves for judgment as a

matter of law under Rule 50(b), or in the alternative,

for a new trial under Rule 59, on copyright issues

regarding the rangeCheck function and decompiled

files. Google’s arguments are repetitive of its Rule

50(a) motion and rely on the same evidence. For

reasons stated in the prior orders (Dkt. Nos. 1119,

1123), Google’s motion is DENIED.

The Court takes this opportunity to state that it

will take no further action regarding the subject of

payments by the litigants to commentators and

journalists and reassures both sides that no

commentary has in any way influenced the Court’s

orders and ruling herein save and except for any

treatise or article expressly cited in an order or

ruling.

IT IS SO ORDERED.

Dated: September 4, 2012.

/s/

WILLIAM ALSUP, UNITED STATES DISTRICT JUDGE

App-174

Appendix I

17 U.S.C. § 101

Definitions

Except as otherwise provided in this title, as

used in this title, the following terms and their

variant forms mean the following:

An “anonymous work” is a work on the

copies or phonorecords of which no natural

person is identified as author.

An “architectural work” is the design of a

building as embodied in any tangible medium of

expression, including a building, architectural

plans, or drawings. The work includes the overall

form as well as the arrangement and composition

of spaces and elements in the design, but does

not include individual standard features.

“Audiovisual works” are works that consist

of a series of related images which are

intrinsically intended to be shown by the use of

machines, or devices such as projectors, viewers,

or electronic equipment, together with

accompanying sounds, if any, regardless of the

nature of the material objects, such as films or

tapes, in which the works are embodied.

The “Berne Convention” is the Convention

for the Protection of Literary and Artistic Works,

signed at Berne, Switzerland, on September 9,

1886, and all acts, protocols, and revisions

thereto.

The “best edition” of a work is the edition,

published in the United States at any time

App-175

before the date of deposit, that the Library of

Congress determines to be most suitable for its

purposes.

A person’s “children” are that person’s

immediate offspring, whether legitimate or not,

and any children legally adopted by that person.

A “collective work” is a work, such as a

periodical issue, anthology, or encyclopedia, in

which a number of contributions, constituting

separate and independent works in themselves,

are assembled into a collective whole.

A “compilation” is a work formed by the

collection and assembling of preexisting

materials or of data that are selected,

coordinated, or arranged in such a way that the

resulting work as a whole constitutes an original

work of authorship. The term “compilation”

includes collective works.

A “computer program” is a set of statements

or instructions to be used directly or indirectly in

a computer in order to bring about a certain

result.

“Copies” are material objects, other than

phonorecords, in which a work is fixed by any

method now known or later developed, and from

which the work can be perceived, reproduced, or

otherwise communicated, either directly or with

the aid of a machine or device. The term “copies”

includes the material object, other than a

phonorecord, in which the work is first fixed.

App-176

“Copyright owner”, with respect to any one

of the exclusive rights comprised in a copyright,

refers to the owner of that particular right.

A “Copyright Royalty Judge” is a Copyright

Royalty Judge appointed under section 802 of

this title, and includes any individual serving as

an interim Copyright Royalty Judge under such

section.

A work is “created” when it is fixed in a copy

or phonorecord for the first time; where a work is

prepared over a period of time, the portion of it

that has been fixed at any particular time

constitutes the work as of that time, and where

the work has been prepared in different versions,

each version constitutes a separate work.

A “derivative work” is a work based upon

one or more preexisting works, such as a

translation, musical arrangement,

dramatization, fictionalization, motion picture

version, sound recording, art reproduction,

abridgment, condensation, or any other form in

which a work may be recast, transformed, or

adapted. A work consisting of editorial revisions,

annotations, elaborations, or other modifications

which, as a whole, represent an original work of

authorship, is a “derivative work”.

A “device”, “machine”, or “process” is one

now known or later developed.

A “digital transmission” is a transmission in

whole or in part in a digital or other non-analog

format.

App-177

To “display” a work means to show a copy of

it, either directly or by means of a film, slide,

television image, or any other device or process

or, in the case of a motion picture or other

audiovisual work, to show individual images

nonsequentially.

An “establishment” is a store, shop, or any

similar place of business open to the general

public for the primary purpose of selling goods or

services in which the majority of the gross

square feet of space that is nonresidential is used

for that purpose, and in which nondramatic

musical works are performed publicly.

The term “financial gain” includes receipt, or

expectation of receipt, of anything of value,

including the receipt of other copyrighted works.

A work is “fixed” in a tangible medium of

expression when its embodiment in a copy or

phonorecord, by or under the authority of the

author, is sufficiently permanent or stable to

permit it to be perceived, reproduced, or

otherwise communicated for a period of more

than transitory duration. A work consisting of

sounds, images, or both, that are being

transmitted, is “fixed” for purposes of this title if

a fixation of the work is being made

simultaneously with its transmission.

A “food service or drinking establishment” is

a restaurant, inn, bar, tavern, or any other

similar place of business in which the public or

patrons assemble for the primary purpose of

being served food or drink, in which the majority

App-178

of the gross square feet of space that is

nonresidential is used for that purpose, and in

which nondramatic musical works are performed

publicly.

The “Geneva Phonograms Convention” is the

Convention for the Protection of Producers of

Phonograms Against Unauthorized Duplication

of Their Phonograms, concluded at Geneva,

Switzerland, on October 29, 1971.

The “gross square feet of space” of an

establishment means the entire interior space of

that establishment, and any adjoining outdoor

space used to serve patrons, whether on a

seasonal basis or otherwise.

The terms “including” and “such as” are

illustrative and not limitative.

An “international agreement” is—

(1) the Universal Copyright Convention;

(2) the Geneva Phonograms Convention;

(3) the Berne Convention;

(4) the WTO Agreement;

(5) the WIPO Copyright Treaty;

(6) the WIPO Performances and Phonograms

Treaty; and

(7) any other copyright treaty to which the

United States is a party.

A “joint work” is a work prepared by two or

more authors with the intention that their

App-179

contributions be merged into inseparable or

interdependent parts of a unitary whole.

“Literary works” are works, other than

audiovisual works, expressed in words, numbers,

or other verbal or numerical symbols or indicia,

regardless of the nature of the material objects,

such as books, periodicals, manuscripts,

phonorecords, film, tapes, disks, or cards, in

which they are embodied.

The term “motion picture exhibition facility”

means a movie theater, screening room, or other

venue that is being used primarily for the

exhibition of a copyrighted motion picture, if

such exhibition is open to the public or is made to

an assembled group of viewers outside of a

normal circle of a family and its social

acquaintances.

“Motion pictures” are audiovisual works

consisting of a series of related images which,

when shown in succession, impart an impression

of motion, together with accompanying sounds, if

any.

To “perform” a work means to recite, render,

play, dance, or act it, either directly or by means

of any device or process or, in the case of a

motion picture or other audiovisual work, to

show its images in any sequence or to make the

sounds accompanying it audible.

A “performing rights society” is an

association, corporation, or other entity that

licenses the public performance of nondramatic

musical works on behalf of copyright owners of

App-180

such works, such as the American Society of

Composers, Authors and Publishers (ASCAP),

Broadcast Music, Inc. (BMI), and SESAC, Inc.

“Phonorecords” are material objects in which

sounds, other than those accompanying a motion

picture or other audiovisual work, are fixed by

any method now known or later developed, and

from which the sounds can be perceived,

reproduced, or otherwise communicated, either

directly or with the aid of a machine or device.

The term “phonorecords” includes the material

object in which the sounds are first fixed.

“Pictorial, graphic, and sculptural works”

include two-dimensional and three-dimensional

works of fine, graphic, and applied art,

photographs, prints and art reproductions, maps,

globes, charts, diagrams, models, and technical

drawings, including architectural plans. Such

works shall include works of artistic

craftsmanship insofar as their form but not their

mechanical or utilitarian aspects are concerned;

the design of a useful article, as defined in this

section, shall be considered a pictorial, graphic,

or sculptural work only if, and only to the extent

that, such design incorporates pictorial, graphic,

or sculptural features that can be identified

separately from, and are capable of existing

independently of, the utilitarian aspects of the

article.

For purposes of section 513, a “proprietor” is

an individual, corporation, partnership, or other

entity, as the case may be, that owns an

establishment or a food service or drinking

http://www.law.cornell.edu/uscode/text/17/513

App-181

establishment, except that no owner or operator

of a radio or television station licensed by the

Federal Communications Commission, cable

system or satellite carrier, cable or satellite

carrier service or programmer, provider of online

services or network access or the operator of

facilities therefor, telecommunications company,

or any other such audio or audiovisual service or

programmer now known or as may be developed

in the future, commercial subscription music

service, or owner or operator of any other

transmission service, shall under any

circumstances be deemed to be a proprietor.

A “pseudonymous work” is a work on the

copies or phonorecords of which the author is

identified under a fictitious name.

“Publication” is the distribution of copies or

phonorecords of a work to the public by sale or

other transfer of ownership, or by rental, lease,

or lending. The offering to distribute copies or

phonorecords to a group of persons for purposes

of further distribution, public performance, or

public display, constitutes publication. A public

performance or display of a work does not of

itself constitute publication.

To perform or display a work “publicly”

means—

(1) to perform or display it at a place open to

the public or at any place where a

substantial number of persons outside of a

normal circle of a family and its social

acquaintances is gathered; or

App-182

(2) to transmit or otherwise communicate a

performance or display of the work to a place

specified by clause (1) or to the public, by

means of any device or process, whether the

members of the public capable of receiving

the performance or display receive it in the

same place or in separate places and at the

same time or at different times.

“Registration”, for purposes of sections 205

(c)(2), 405, 406, 410 (d), 411, 412, and 506 (e),

means a registration of a claim in the original or

the renewed and extended term of copyright.

“Sound recordings” are works that result

from the fixation of a series of musical, spoken,

or other sounds, but not including the sounds

accompanying a motion picture or other

audiovisual work, regardless of the nature of the

material objects, such as disks, tapes, or other

phonorecords, in which they are embodied.

“State” includes the District of Columbia and

the Commonwealth of Puerto Rico, and any

territories to which this title is made applicable

by an Act of Congress.

A “transfer of copyright ownership” is an

assignment, mortgage, exclusive license, or any

other conveyance, alienation, or hypothecation of

a copyright or of any of the exclusive rights

comprised in a copyright, whether or not it is

limited in time or place of effect, but not

including a nonexclusive license.

A “transmission program” is a body of

material that, as an aggregate, has been

http://www.law.cornell.edu/uscode/text/17/205
http://www.law.cornell.edu/uscode/text/17/usc_sec_17_00000205----000-#c_2
http://www.law.cornell.edu/uscode/text/17/406
http://www.law.cornell.edu/uscode/text/17/410
http://www.law.cornell.edu/uscode/text/17/usc_sec_17_00000410----000-#d
http://www.law.cornell.edu/uscode/text/17/411
http://www.law.cornell.edu/uscode/text/17/412
http://www.law.cornell.edu/uscode/text/17/506
http://www.law.cornell.edu/uscode/text/17/usc_sec_17_00000506----000-#e

App-183

produced for the sole purpose of transmission to

the public in sequence and as a unit.

To “transmit” a performance or display is to

communicate it by any device or process whereby

images or sounds are received beyond the place

from which they are sent.

A “treaty party” is a country or

intergovernmental organization other than the

United States that is a party to an international

agreement.

The “United States”, when used in a

geographical sense, comprises the several States,

the District of Columbia and the Commonwealth

of Puerto Rico, and the organized territories

under the jurisdiction of the United States

Government.

For purposes of section 411, a work is a

“United States work” only if—

(1) in the case of a published work, the work

is first published—

(A) in the United States;

(B) simultaneously in the United States

and another treaty party or parties,

whose law grants a term of copyright

protection that is the same as or longer

than the term provided in the United

States;

(C) simultaneously in the United States

and a foreign nation that is not a treaty

party; or

App-184

(D) in a foreign nation that is not a treaty

party, and all of the authors of the work

are nationals, domiciliaries, or habitual

residents of, or in the case of an

audiovisual work legal entities with

headquarters in, the United States;

(2) in the case of an unpublished work, all

the authors of the work are nationals,

domiciliaries, or habitual residents of the

United States, or, in the case of an

unpublished audiovisual work, all the

authors are legal entities with headquarters

in the United States; or

(3) in the case of a pictorial, graphic, or

sculptural work incorporated in a building or

structure, the building or structure is located

in the United States.

A “useful article” is an article having an

intrinsic utilitarian function that is not merely to

portray the appearance of the article or to convey

information. An article that is normally a part of

a useful article is considered a “useful article”.

The author’s “widow” or “widower” is the

author’s surviving spouse under the law of the

author’s domicile at the time of his or her death,

whether or not the spouse has later remarried.

The “WIPO Copyright Treaty” is the WIPO

Copyright Treaty concluded at Geneva,

Switzerland, on December 20, 1996.

The “WIPO Performances and Phonograms

Treaty” is the WIPO Performances and

App-185

Phonograms Treaty concluded at Geneva,

Switzerland, on December 20, 1996.

A “work of visual art” is—

(1) a painting, drawing, print, or sculpture,

existing in a single copy, in a limited edition

of 200 copies or fewer that are signed and

consecutively numbered by the author, or, in

the case of a sculpture, in multiple cast,

carved, or fabricated sculptures of 200 or

fewer that are consecutively numbered by

the author and bear the signature or other

identifying mark of the author; or

(2) a still photographic image produced for

exhibition purposes only, existing in a single

copy that is signed by the author, or in a

limited edition of 200 copies or fewer that are

signed and consecutively numbered by the

author.

A work of visual art does not include—

(A) (i) any poster, map, globe, chart,

technical drawing, diagram, model, applied art,

motion picture or other audiovisual work, book,

magazine, newspaper, periodical, data base,

electronic information service, electronic

publication, or similar publication;

(ii) any merchandising item or

advertising, promotional, descriptive,

covering, or packaging material or

container;

(iii) any portion or part of any item

described in clause (i) or (ii);

App-186

(B) any work made for hire; or

(C) any work not subject to copyright

protection under this title.

A “work of the United States

Government” is a work prepared by an officer or

employee of the United States Government as

part of that person’s official duties.

A “work made for hire” is—

(1) a work prepared by an employee within

the scope of his or her employment; or

(2) a work specially ordered or commissioned

for use as a contribution to a collective work,

as a part of a motion picture or other

audiovisual work, as a translation, as a

supplementary work, as a compilation, as an

instructional text, as a test, as answer

material for a test, or as an atlas, if the

parties expressly agree in a written

instrument signed by them that the work

shall be considered a work made for hire. For

the purpose of the foregoing sentence, a

“supplementary work” is a work prepared for

publication as a secondary adjunct to a work

by another author for the purpose of

introducing, concluding, illustrating,

explaining, revising, commenting upon, or

assisting in the use of the other work, such

as forewords, afterwords, pictorial

illustrations, maps, charts, tables, editorial

notes, musical arrangements, answer

material for tests, bibliographies,

appendixes, and indexes, and an

App-187

“instructional text” is a literary, pictorial, or

graphic work prepared for publication and

with the purpose of use in systematic

instructional activities.

In determining whether any work is eligible

to be considered a work made for hire under

paragraph (2), neither the amendment

contained in section 1011(d) of the

Intellectual Property and Communications

Omnibus Reform Act of 1999, as enacted by

section 1000(a)(9) ofPublic Law 106–113, nor

the deletion of the words added by that

amendment—

(A) shall be considered or otherwise given

any legal significance, or

(B) shall be interpreted to indicate

congressional approval or disapproval of, or

acquiescence in, any judicial determination,

by the courts or the Copyright Office. Paragraph

(2) shall be interpreted as if both section 2(a)(1)

of the Work Made For Hire and Copyright

Corrections Act of 2000 and section 1011(d) of

the Intellectual Property and Communications

Omnibus Reform Act of 1999, as enacted by

section 1000(a)(9) ofPublic Law 106–113, were

never enacted, and without regard to any

inaction or awareness by the Congress at any

time of any judicial determinations.

The terms “WTO Agreement” and “WTO

member country” have the meanings given those

terms in paragraphs (9) and (10), respectively, of

section 2 of the Uruguay Round Agreements Act.

App-188

17 U.S.C. § 102

Subject matter of copyright: In general

(a) Copyright protection subsists, in accordance

with this title, in original works of authorship fixed

in any tangible medium of expression, now known or

later developed, from which they can be perceived,

reproduced, or otherwise communicated, either

directly or with the aid of a machine or device. Works

of authorship include the following categories:

(1) literary works;

(2) musical works, including any accompanying

words;

(3) dramatic works, including any accompanying

music;

(4) pantomimes and choreographic works;

(5) pictorial, graphic, and sculptural works;

(6) motion pictures and other audiovisual works;

(7) sound recordings; and

(8) architectural works.

(b) In no case does copyright protection for an

original work of authorship extend to any idea,

procedure, process, system, method of operation,

concept, principle, or discovery, regardless of the

form in which it is described, explained, illustrated,

or embodied in such work.

